Наука
Advertisement

Определение[]

Биномиальное распределение с равновероятными успехами испытаний Бернулли— это распределение двух случайных величин и в дискретной временной последовательности , вторая случайная величина зависима от первой, числовые значения случайных величин и это числа успехов в испытаниях () с постоянными вероятностями успехов ( Бернулли распределений) , пронормированных согласно аксиоматике Колмогорова .

Технические задачи и технические результаты[]

Для получения биномиального распределения необходимо решить две технические задачи и получить технические результаты, относящиеся к математической физике [1],  [2].

Первая и вторая технические задачи — соответственно получение вероятности и математического ожидания биномиального распределения.

Технические результаты — набор технических параметров, с одной стороны, минимально необходимый для описания биномиального распределения и его случайных величин, с другой стороны, позволяющий при необходимости расширить число параметров с целью получения дополнительных сведений о распределении, например, таких как корреляционная матрица, ковариационная матрица, -квадрат критерий и другие.

Минимально необходимый набор параметров при решении первой технической задачи: пространство элементарных событий, вероятность, математическое ожидание и дисперсия каждой случайной величины распределения, дисперсия распределения и произведение математических ожиданий его случайных величин как исходное выражение для решения второй технической задачи.

При решении второй технической задачи минимально необходимый набор параметров аналогичен предыдущему набору. Исключен из-за ненадобности один параметр — произведение математических ожиданий случайных величин и дополнен двумя параметрами — максимальной вероятностью и максимальной дисперсией биномиального распределения (таблица 1).

Таблица 1 – Характеристики биномиального распределения с равновероятными успехами испытаний Бернулли
Пространство элементарных событий
Вероятность
Максимальная вероятность

(при математическом ожидании распределения)

Математическое ожидание

(как максимальное произведение математических ожиданий

случайных величин)

Дисперсия
Максимальная дисперсия

(при математическом ожидании распределения)

Ковариационная матрица , где
Корреляционная матрица , где
- критерий

Схема повторных циклов случайных зависимых экспериментов с равновероятными успехами испытаний Бернулли[]

Биномиальное распределение с равновероятными успехами испытаний Бернулли появляется в так называемой биномиальной схеме повторных циклов случайных зависимых экспериментов. Каждый цикл экспериментов осуществляют методом выбора без возвращения в дискретной временной последовательности , номера точек которой соответствуют номерам случайных величин.

Каждая из случайных величин распределения — это число наступлений одного соответствующего события

в - ый момент времени при условии, что в - ый момент произошло наступлений предшествующего события с положительным исходом, все вероятности которых равны нормированы и неизменны во время проведения экспериментов.

Если в каждом цикле экспериментов вероятность наступления события равна , то биномиальная вероятность равна вероятности того, что при экспериментах события наступят раз соответственно.

Случайная величина биномиального распределения с равновероятными успехами испытаний Бернулли в соответствующей точке дискретной временной последовательности имеет:

пространство элементарных событий

вероятность

математическое ожидание

и дисперсию

Пространство элементарных событий биномиального распределения с равновероятными успехами испытаний Бернулли есть сумма точечных пространств элементарных событий его случайных величин, образующих дискретную последовательность точек цикла, а вероятность биномиального распределения с равновероятными успехами испытаний Бернулли — произведение вероятностей его случайных величин.

Вероятностная схема биномиального распределения с равновероятными успехами испытаний Бернулли[]

содержит циклы повторных зависимых экспериментов. Количество циклов не ограничено. В каждом цикле число экспериментов равно числу случайных величин распределения. Первый эксперимент является независимым, а второй эксперимент в цикле зависим от результата первого эксперимента. Все эксперименты осуществляют методом выбора без возвращения — изъятые элементы не возвращают на свое прежнее место до полного окончания данного цикла.

Случайные события – выборки случайных объемов осуществляют из - множества различимых (различающиеся между собой хотя бы одним признаком, например, порядковым номером) неупорядоченных (хаотично расположенных) элементов и следуют в последовательные моменты времени .

Число выборок равно числу случайных величин распределения.

Случайные величины распределения — появления случайного числа элементов - множества в - подмножествах , с равными вероятностями каждого элемента.

Попадание одного произвольного элемента - множества в одно из подмножеств — независимое событие — испытание Бернулли с положительным исходом; вероятности этих испытаний равны , нормированы и неизменны во время проведения повторных зависимых экспериментов.

Один цикл повторных зависимых экспериментов, осуществляемых методом выбора без возвращения — последовательность выборок случайных объёмов , обработка результатов разделения - множества на два подмножества в последовательные моменты времени и возврат всех изъятых элементов на прежнее место к началу следующего цикла.

Совместное проявление вероятностей попадания выборок случайных объёмов в одном цикле экспериментов — вероятность биномиального распределения с равновероятными успехами испытаний Бернулли .

Урновая модель биномиального распределения с равновероятными успешными исходами испытаний Бернулли[]

Состав: одна исходная урна и две приёмных урн. Объем каждой из них не менее объёма исходной урны.

Нумерация приёмных урн соответствует нумерации случайных величин биномиального распределения.

В начальный момент времени исходная урна содержит - множество различимых неупорядоченных элементов, а все приёмные урны пусты.

В первый момент времени из исходной урны осуществляют первую выборку случайного объёма и направляют её в первую приёмную урну с вероятностью каждого элемента.

Во второй момент времени все элементы , оставшиеся в исходной урне, направляют во вторую приёмную урну с вероятностью каждого.

В результате исходная урна пуста, а все её элементы размещены в приёмных урнах.

После обработки результатов разбиения исходного - множества на два подмножества все элементы из приёмных урн возвращают в исходную урну.

На этом один цикл повторных зависимых экспериментов закончен, и урновая модель готова к проведению следующего аналогичного цикла.

Произведение вероятностей попадания элементов исходного - множества в первую и вторую урны соответственно есть вероятность биномиального распределения с равновероятными исходами испытаний Бернулли.

Два способа получения вероятностей биномиального распределения с равновероятными успехами испытаний Бернулли[]

Первый способ относится к способам разделения дискретного целого на две части случайных объёмов, в сумме равные исходному целому.

Второй способ является частным случаем способа разделения дискретного целого на несколько частей случайных объёмов, в сумме равных исходному целому.

Первый способ[]

Целым является множество дискретных элементов, различимых (хотя бы одним признаком, например, порядковыми номерами) и не упорядоченных (хаотично расположенных): .

Составные части — два дискретных подмножества, в сумме равные объёму множества.

Разделение множества на подмножества осуществляют выборками без возвращения.

Выборки следуют во времени одна за другой.

В начальный момент времени , не обязательно равный нулю , множество содержит различимых неупорядоченных элементов.

В первый момент времени из -множества осуществляют первую выборку случайного объёма с вероятностью каждого её элемента.

Вероятность первой случайной величины биномиального распределения определяется числом сочетаний из по , умноженным на вероятность выбора одного элемента, возведённую в степень числа выбранных элементов:

Во второй момент времени все оставшиеся элементы исходного множества выбирают с вероятностью каждого её элемента.

Произведение двух вероятностей есть вероятность биномиального распределения с равновероятными успехами испытаний Бернулли

Когда число случайных величин равно имеют место вероятность полиномиального распределения с равновероятными успехами испытаний Бернулли.

Второй способ[]

Способ получения вероятности биномиального распределения с равновероятными успехами испытаний Бернулли может быть получен как частный случай способа получения вероятности полиномиального распределения с равновероятными успехами испытаний Бернулли при сокращении в последнем числа случайных величин до двух: .

В итоге получаем требуемый результат

Два способа получения математического ожидания биномиального распределения с равновероятными успехами испытаний Бернулли[]

Первый способ[]

Этот способ относится к техническим задачам разделения дискретного целого на две составные части случайных объёмов.

От способа получения математического ожидания полиномиального распределения тем, что число выборок равно числу случайных величин биномиального распределения.

При этом, как и в полиномиальном распределении каждая выборка имеет единичный объём: .

Целым является множество дискретных элементов, различимых (хотя бы одним признаком, например, порядковыми номерами) и не упорядоченных (хаотично расположенных): .

Составные части — дискретные подмножества , в сумме равные объёму множества.

Разделение множества на подмножества осуществляют выборками без возвращения.

Выборки следуют во времени одна за другой.

В начальный момент времени , не обязательно равный нулю , множество содержит два различимых неупорядоченных элементов.

В первый момент времени из -множества осуществляют первую выборку единичного объёма с вероятностью .

Вероятность первой случайной величины биномиального распределения определяется числом сочетаний из по , умноженным на вероятность выбора одного элемента:

Во второй момент времени из оставшихся элементов исходного множества осуществляют вторую выборку единичного объёма с вероятностью .

Вероятность второй случайной величины при условии, что в первый момент времени вероятность первая случайная величина полиномиального распределения приняла значение , определяется числом сочетаний из по , умноженным на вероятность выбора одного элемента:

Произведение вероятностей есть математическое ожидание биномиального распределения с равновероятными успехами испытаний Бернулли

Второй способ[]

Математическое ожидание биномиального распределения с равновероятными успехами испытаний Бернулли получают как частный случай математического ожидания полиномиального распределения с равновероятными успехами испытаний Бернулли при одновременном сокращении числа случайных величин до двух и числа испытаний до двух

Биномиальное распределение как процесс выполнения взаимосвязанных действий над объектами[]

Объекты: множество, его подмножества и их элементы как объективная реальность, существующая вне нас и независимо от нас. Биномиальное распределение с равновероятными успехами испытаний Бернулли это:

  • случайный процесс безвозвратного разделения последовательно во времени и в пространстве конечного - множества различимых неупорядоченных элементов на две части случайных объёмов, сумма которых равна объёму исходного множества: ,
  • разделение множества осуществляют выборками без возвращения (изъятые из множества элементы не возвращают обратно во множество до полного окончания экспериментов),
  • вероятность попадания одного произвольного элемента множества в каждое из подмножеств принимают за соответствующую вероятность успеха (успешного завершения испытания) Бернулли распределения ,
  • вероятности успехов Бернулли распределений нормируют согласно аксиоматике Колмогорова и принимают неизменными до окончания испытаний,
  • очерёдность следования выборок принимают за очередность следования во времени и нумерацию случайных величин биномиального распределения,
  • случайный объём каждой выборки в момент времени принимают за числовое значение соответствующей случайной величины биномиального распределения,
  • если в первый момент времени первая случайная величина приняла значение

то во второй момент времени вторая случайная величина принимает значение

  • результаты каждого разбиения обрабатывают вероятностными методами, определяют технические характеристике всех выборок и принимают их за технические характеристики случайных величин биномиального распределения,
  • математическое ожидание биномиального распределения имеет место, когда число выборок равно числу элементов -множества и численно равно .

Биномиальное распределение как цепь Маркова[]

Биномиальное распределение с равновероятными успехами испытаний Бернулли появляется в последовательности двух испытаний, первое из них случайное независимое, а второе зависимое от первого испытания. Исходы испытаний конечны и счётны. По сути — это простейшая цепь Маркова. (, называемое начальным распределением цепи Маркова, для биномиального распределения не имеет смысла , поскольку нумерация случайных величин начинается с единицы.)

Единственная переходная вероятность

заключается в том, что вторая случайная величина во второй момент времени вынуждена принять числовое значение, равное , при условии, что в первый момент времени первая случайная величина приняла случайное значение, равное .

Следовательно и вероятность биномиального распределения с равновероятными успехами испытаний Бернулли

как произведение первой независимой и второй зависимой случайных величин является простейшей цепью Маркова. Сумма всех вероятностей биномиального распределения равна единице . Следовательно, биномиальное распределение как цепь Маркова, является стахостической.

Переходная вероятность биномиального распределения является дискретной функцией. Следовательно, биномиальное распределение является марковским процессом с дискретным временем.

Связь с другими распределениями[]

Если и хотя бы для одной пары вероятностей, то имеет место полиномиальное распределение интерпретации 21-го века.

Если , то имеет место полиномиальное распределение с равновероятными успехами испытаний Бернулли.

Если и все случайные величины распределения считались независмыми, то в 20-ом веке имели место следующие названия: распределение Максвелла - Больцмана [3], статистика Максвелла - Больцмана [4], распределение Больцмана [5], статистика Больцмана [6].

Если , то имеет место биномиальное распределение: новая интерпретация, иными словами биномиальное распределение интерпретации 21-го века.


См.также[]

Литература[]

  1.  http://ru.wikipedia.org/wiki/ Математическая физика
  2.  Голоборщенко В. С. Основы теории дискретных распределений. Часть 5: Как технические задачи и технические результаты математической физики. // Проблемы создания информационных технологий. М.: ООО Техполиграфцентр, 2010. Вып. 19, с. 31–36.
  3. Феллер В. Введение в теорию вероятностей и её приложения. Том 1. М.: Мир, 1984. С.40,59,61,62.
  4. Максвелла - Больцмана статистика. Вероятность и математическая статистика. Энциклопедия / Гл. ред. Ю. В. Прохоров. М.: Большая Российская энциклодедия, 1999, с. 295. ISBN 585270265X
  5. Шорин С. Я. Больцмана распределение. Вероятность и математическая статистика. Энциклопедия / Гл. ред. Ю. В. Прохоров. М.: Большая Российская энциклодедия, 1999. С. 55. ISBN 585270265X
  6. Зубарев Д. Н. Больцмана статистика Вероятность и математическая статистика. Энциклопедия / Гл. ред. Ю. В. Прохоров. М.: Большая Российская энциклодедия, 1999. С. 55. ISBN 585270265X
Advertisement