Висмут(Bi)
Атомный номер 83

Слиток металлического висмута.

Внешний вид Твёрдый хрупкий металл
стального цвета с
розоватым отливом
Свойства атома
Атомная масса
(молярная масса)
208.98037 а. е. м. (г/моль)
Радиус атома 170 пм
Энергия ионизации
(первый электрон)
702.9(7.29) кДж/моль (эВ)
Электронная конфигурация [Xe] 4f14 5d10 6s2 6p3
Химические свойства
Ковалентный радиус 146 пм
Радиус иона (+5e) 74 (+3e) 96 пм
Электроотрицательность
(по Полингу)
2.02
Электродный потенциал Bi←Bi3+ 0.23В
Степени окисления 5, 3
Термодинамические свойства
Плотность 9.747 г/см³
Удельная теплоёмкость 0.124 Дж/(K·моль)
Теплопроводность 7.9 Вт/(м·K)
Температура плавления 544.5 K
Теплота плавления 11.00 кДж/моль
Температура кипения 1883 K
Теплота испарения 172.0 кДж/моль
Молярный объём 21.3 см³/моль
Кристаллическая решётка
Структура решётки ромбоэдрическая
Период решётки 4.750 Å
Отношение c/a n/a
Температура Дебая 120.00 K

История открытия[править | править код]

Висмут известен с 15 века, но его долго принимали за разновидность олова, свинца или сурьмы. В 1529 немецкий ученый в области горного дела и металлургии Г. Агрикола дал первые сведения о металлическом висмуте, его добыче и переработке. Химическую индивидуальность висмута первым установил в 1739 И. Потт.

Происхождение названия[править | править код]

Предположительно латинское Bismuthum или bisemutum происходит от немецкого weisse Masse, белая масса.

Нахождение в природе[править | править код]

Содержание висмута в земной коре очень мало и составляет всего 9·10-7% (71-е место среди всех элементов). В природе иногда встречается в свободном виде. исмут — редкий рассеянный элемент, его собственные минералы очень редки. Важнейшие из них: висмутин, или висмутовый блеск, Bi2S3 (81,3 % Bi), козалит Pb2Bi2S5 (42 % Bi), бисмит Bi2O3(89,7 % Bi) и некоторые другие. В

Получение[править | править код]

Висмут получают сплавлением сульфида с железом:

Bi2S3 + 3Fe = 2Bi + 3FeS,

или последовательным проведением процессов:

Bi2S3 + 5O2 = Bi2O4 + 3SO2↑;

Bi2O4 + 4C = 2Bi + 4CO↑.

Синтезированный кристалл висмута. Радужную окраску придает тонкий слой окисла.

Физические и химические свойства[править | править код]

При обычном давлении существует только одна ромбоэдрическая модификация висмута (параметры решетки с периодом а = 0,4746 нм и углом = 57,23°). При плавлении висмут уменьшается в объёме (как лёд), то есть твёрдый висмут легче жидкого. При высоких давлениях существуют другие модификации металлического висмута. Висмут хрупок, легко растирается в порошок. Висмут — самый сильный диамагнетик среди металлов.

В сухом воздухе висмут не окисляется, во влажной атмосфере постепенно покрывается пленкой оксидов. При нагревании выше 1000 °C сгорает с образованием основного оксида Bi2O3.

При окислении хлором суспензии Bi2O3 в среде водного раствора КОН при температуре около 100 °C образуется Bi2O5. Кроме того, известны оксиды висмута составов Bi2O, Bi6O7 и Bi8O11.

При сплавлении висмута и серы образуется сульфид состава Bi2S3, обладающий полупроводниковыми и термоэлектрическими свойствами. При сплавлении висмута с селеном или теллуром образуются, соответственно, селенид или теллурид висмута.

Известны галогениды висмута состава BiX3, пентафторид BiF5, а также оксигалогениды составов BiOX (X = Cl, Br, I).

При действии кислот на сплав висмута с магнием образуется висмутин BiH3 — очень неустойчивый ядовитый газ.

При взаимодействии висмута с металлами образуются висмутиды, например, висмутид натрия Na3Bi, висмутид магния Mg3Bi и др.

При понижении рН растворов солей висмута (III) в осадок выпадают различные гидроксосоли, например, Bi(OH)2NO3. Ранее считалось, что они содержат ион BiO+ (висмутил-ион), однако установлено, что такие гидроксосоли содержат октаэдрические катионы [Bi6(OH)12]6+, [Bi6O4(OH)4]6+ и [Bi6(OH)12]6+. Растворимые соли висмута ядовиты.

Мировая добыча и потребление висмута[править | править код]

Висмут в достаточной степени редкий металл, и его мировая добыча/потребление едва превышает 6000 тонн в год(от 5800 до 6400 тонн в год).

Цены[править | править код]

Цены на висмут в слитках чистотой 99 % в 2006 году составили в среднем 15 долл/кг.

Применение[править | править код]

Металлургия[править | править код]

Висмут имеет большое значение для производства так называемых «автоматных сталей», особенно нержавеющих и очень облегчает их обработку резанием на станках-автоматах (токарных, фрезерных и др.) при концентрации висмута всего 0,003 %, в то же время не увеличивая склонность к коррозии. Висмут используют в сплавах на основе алюминия (примерно 0,01 %), эта добавка улучшает пластические свойства металла, резко упрощает его обработку.

Катализаторы[править | править код]

В производстве полимеров трёхокись висмута служит катализатором, и ее применяют, в частности, при получении акриловых полимеров. При крекинге нефти некоторое применение находит оксохлорид висмута.

Термоэлектрические материалы[править | править код]

Файл:DSC00199.JPG

Монокристалл теллурида висмута

Одним из важнейших направлений применения висмута является производство полупроводниковых материалов и в частности теллуридов (термо-э.д.с. теллурида висмута 280 мкВ/К) и селенидов висмута. Получен высокоэффективный материал на основе висмут-цезий-теллур для производства полупроводниковых холодильников суперпроцессоров.

Детекторы ядерных излучений[править | править код]

Некоторое значение для производства детекторов ядерного излучения имеет монокристаллический йодид висмута. Германат висмута — сцинтилляционный материал, и применяется в ядерной физике, физике высоких энергий, компьютерной томографии, геологии.

Легкоплавкие сплавы[править | править код]

Сплавы висмута с кадмием, оловом, свинцом, индием, таллием, ртутью, цинком и галлием, обладают очень низкой температурой плавления и применяются в качестве теплоносителей и припоев, а так же в медицине в качестве фиксирующих составов для сломанных конечностей. Некоторые легкоплавкие сплавы применяются в качестве элементов противопожарной сигнализации, в качестве специальных смазок работающих в вакууме и тяжелых условиях, в качестве клапанов (при расплавлении открывающих просвет для протекания жидкостей и газов (например ракетных топлив), в качестве предохранителей в мощных электрических цепях, в качестве уплотнительных прокладок в сверхвысоковакуумных системах, как термометрические материалы, как материалы для изготовления выплавляемых моделей в литье и т. д.

Измерение магнитных полей[править | править код]

Металлический висмут особой чистоты служит материалом для производства обмотки для измерения сверхсильных магнитных полей, ввиду того что при увеличении магнитного поля электросопротивление висмута резко возрастает, и в то же время достаточно равномерно чтобы по изменению сопротивления обмотки изготовленной из него судить о напряженности внешнего магнитного поля.

Производство полония-210[править | править код]

Некоторое значение висмут имеет в ядерной технологии при получении полония — важного элемента радиоизотопной промышленности.

Химические источники тока[править | править код]

Издавна оксид висмута в смеси с графитом используется в качестве положительного электрода в висмутисто-магниевых элементах (ЭДС 1,97—2,1 Вольт, 120 Вт/час/кг, 250—290 Вт/час/дм3). Так же в качестве положительного электрода в литиевых элементах находит применение висмутат свинца. Висмут в сплаве с индием находит применение в чрезвычайно стабильных и надежных ртутно-висмуто-индиевых элементах. Такие элементы прекрасно работают в космосе и в тех условиях, где важна стабильность напряжения, высокая удельная энергия, а снижение частоты отказов играет первостепенную роль (например военные применения). Трехфтористый висмут применяется для производства чрезвычайно энергоемких (3000 Вт/час/дм3, практически достигнутое — 1500—2300 Вт/час/дм3) лантан-фторидных аккумуляторов.

Ядерная энергетика и обработка прочных металлов и сплавов[править | править код]

Малое сечение захвата висмутом тепловых нейтронов и значительная способность к растворению урана в купе с значительной температурой кипения и невысокой агрессивностью к конструкционным материалам позволяет использовать висмут в гомогенных атомных реакторах, и кроме того в сплавах висмута (например сплав Вуда, сплав Розе и др.) производят токарную, фрезерную обработку и сверление урана, вольфрама и его сплавов, и других материалов невероятно трудно поддающихся обработке резанием.

Электроядерный реактор. Исследования и разработка[править | править код]

Висмут в ближайшем будущем найдет так же применение в качестве ядерного топлива в виде эвтектического сплава со свинцом. Повышенный интерес к висмуту в ядерной технологии связан как с расширением потенциальных ресурсов энергии для человечества, так и с повышенной безопасностью электроядерных установок (ЭЯУ) в связи с тем что их работа происходит в глубокоподкритическом режиме.

Магнитные материалы[править | править код]

Интерметаллид марганец-висмут сильно ферромагнитен и производится в больших количествах промышленностью для получения пластичных магнитов. Особенностью и преимуществом такого материала является возможность быстрого и дешевого получения постоянных магнитов (к тому же не проводящих ток) любой формы и размеров. Кроме того этот магнитный материал достаточно долговечен и обладает значительной коэрцитивной силой. Кроме соединений висмута с марганцем, так же известны магнитотвердые соединения висмута с индием, хромом и европием, применение которых ограничено специальными областями техники вследствие трудностей синтеза(висмут-хром), либо ввиду высокой цены второго компонента(индий,европий).

Топливные элементы. Суперионные проводники[править | править код]

Керамические фазы ВИМЕВОКС(), включающие в свой состав оксид висмута с оксидами других металлов (ванадий, медь, никель, молибден и др.) обладают очень высокой проводимостью при температурах 500—700К и применяются для производства высокотемпературных топливных элементов.

Высокотемпературная сверхпроводимость[править | править код]

Сверхпроводящие фазы включающие в свой состав оксиды висмута, кальция, стронция, бария, меди, иттрия и др. являются высокотемпературными сверхпроводниками. В последние годы при изучении этих сверхпроводников выявлены фазы, имеющие пики перехода в сверхпроводящее состояние при 155К, 175К, 234К(!), и вызывающие самый пристальный интерес.

Производство тетрафторгидразина[править | править код]

Висмут в виде мелкой стружки или порошка применяется для производства тетрафторгидразина из трехфтористого азота, используемого в качестве мощнейшего окислителя ракетного горючего.

Электроника[править | править код]

Сплав состава 88 % Bi и 12 % Sb в магнитном поле обнаруживает аномальный эффект магнитосопротивления; из этого сплава изготовляют быстродействующие усилители и выключатели.

Вольфрамат, станнат-ванадат, силикат и ниобат висмута входит в состав высокотемпературных сегнетоэлектрических материалов. Феррит висмута применяется в качестве магнитоэлектрического материала.


Медицина[править | править код]

Из соединений висмута в медицинском направлении шире всего используют его трехокись Bi2O3. В частности, ее применяют в фармацевтической промышленности для изготовления многих лекарств от желудочно-кишечных заболеваний, а также антисептических и заживляющих средств. На ее основе, создан ряд препаратов обладающих высокой противоопухолевой активностью.

Оксохлорид висмута находит применение в медицине в качестве рентгеноконтрастного средства и в качестве наполнителя при изготовлении кровеносных сосудов. Кроме того в медицине находят широкое применение такие соединения висмута как: галлат, тартрат, карбонат, субсалицилат, субцитрат, трибромфенолят висмута. На основе этих соединений разработано множество медицинских препаратов, из которых особенное внимание(производство, применение) привлекают наиболее эффективные противоязвенные лекарства «Де-Нол» и «Десмол».

Пигменты[править | править код]

Ванадат висмута применяется в качестве пигмента.

Косметика[править | править код]

В производстве лака для ногтей, губной помады, теней и др, оксохлорид применяется как блескообразователь.

Биологическая роль[править | править код]

Заготовка раздела
Этот раздел не завершён.
Вы поможете проекту, исправив и дополнив его.

Изотопы[править | править код]

Природный висмут состоит из одного изотопа 209Bi, который считался самым тяжёлым из существующих в природе стабильных изотопов. Однако в 2003 было экспериментально доказано, что он является альфа-радиоактивным с периодом полураспада 1,9±0,2×1019 лет.

Кроме 209Bi, известны еще 19 изотопов. Все они радиоактивны и короткоживущи: периоды полураспада не превышают нескольких суток.

Тринадцать изотопов висмута с массовыми числами от 197 до 208 и самый тяжелый 215Bi получены искусственным путем, остальные — 210Bi, 211Bi, 212Bi, 213Bi и 214Bi — образуются в природе в результате радиоактивного распада ядер урана, тория, актиния и нептуния.

Ссылки[править | править код]


Периодическая система элементов
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr


az:Bismut bs:Bizmut ca:Bismut co:Bismutu cs:Bismut da:Bismuth de:Bismut el:Βισμούθιο en:Bismuth eo:Bismuto es:Bismuto et:Vismut fi:Vismutti fr:Bismuth gl:Bismuto (elemento) he:ביסמוט hr:Bizmut hu:Bizmut hy:Բիսմութ id:Bismut io:Bismuto is:Bismút it:Bismuto ja:ビスマス jbo:jinmrbismu ko:비스무트 ku:Bîzmût la:Bisemutum lb:Bismuth lt:Bismutas lv:Bismuts nl:Bismut nn:Vismut no:Vismut oc:Bismut pl:Bizmut pt:Bismuto ro:Bismut sh:Bizmut simple:Bismuth sk:Bizmut sr:Бизмут sv:Vismut th:บิสมัท tr:Bizmut uk:Бісмут ur:بسمیتھ vi:Bitmut zh:铋



  1. Википедия Висмут адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Висмут и найти в:

  1. Вокруг света адрес
  2. Академик адрес
  3. Астронет адрес
  4. Элементы адрес
  5. Научная Россия адрес
  6. Кругосвет адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниеадрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Висмут 1», чтобы сохранить ее

Комментарии читателей:[править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.