ФЭНДОМ


https://ru.wikipedia.org/wiki/%D0%92%D0%BE%D0%B4%D0%BE%D1%80%D0%BE%D0%B4


Водород / Hydrogenium (H)
Атомный номер 1
Внешний вид газ без цвета, вкуса и запаха
Свойства атома
Атомная масса
(молярная масса)
1,00794 а. е. м. (г/моль)
Радиус атома 79 пм
Энергия ионизации
(первый электрон)
1311,3 кДж/моль (эВ)
Электронная конфигурация 1s1
Химические свойства
Ковалентный радиус 32 пм
Радиус иона 54 (−1 e) пм
Электроотрицательность
(по Полингу)
2,20
Электродный потенциал
Степени окисления 1, −1
Термодинамические свойства
Плотность 0,0000899 (при 273K (0 °C)) г/см³
Удельная теплоёмкость 14,235[1] Дж/(K·моль)
Теплопроводность 0,1815 Вт/(м·K)
Температура плавления 14,01 K
Теплота плавления 0,117 кДж/моль
Температура кипения 20,28 K
Теплота испарения 0,904 кДж/моль
Молярный объём 14,1 см³/моль
Кристаллическая решётка
Структура решётки гексагональная
Период решётки a=3,780 c=6,167 Å
Отношение c/a 1,631
Температура Дебая 110 K
H 1
1,00794
1s1
Водород

Водоро́д — первый элемент периодической системы элементов. Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1H — протон. Свойства ядра 1H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Три из пяти изотопов водорода имеют собственные названия: 1H — протий (Н), 2H — дейтерий (D) и 3H — тритий (радиоактивен) (T).

Простое вещество водород — H2 — лёгкий бесцветный газ. В смеси с воздухом или кислородом горюч и взрывоопасен. Нетоксичен. Растворим в этаноле и ряде металлов: железе, никеле, палладии, платине.

История Править

Electron shell 001 Hydrogen

Структура атома

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Знаменитый английский физик и химик Г. Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик А. Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Происхождение названия Править

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — «вода» и γενναω — «рождаю») — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с ломоносовским «кислородом».

Распространённость Править

Во Вселенной Править

Водород — самый распространённый элемент во Вселенной. На его долю приходится около 92 % всех атомов (8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца ~ 6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных атомов и ионов.

Земная кора и живые организмы Править

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна ~ 52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение Править

Промышленные способы получения простых веществ зависят от того, в каком виде соответствующий элемент находится в природе, то есть что может быть сырьём для его получения. Так, кислород, имеющийся в свободном состоянии, получают физическим способом — выделением из жидкого воздуха. Водород же практически весь находится в виде соединений, поэтому для его получения применяют химические методы. В частности, могут быть использованы реакции разложения. Одним из способов получения водорода служит реакция разложения воды электрическим током.

Основной промышленный способ получения водорода — реакция с водой метана, который входит в состав природного газа. Она проводится при высокой температуре (легко убедиться, что при пропускании метана даже через кипящую воду никакой реакции не происходит):

СН4 + 2Н2O = CO2↑ + 4Н2 −165 кДж

В лаборатории для получения простых веществ используют не обязательно природное сырьё, а выбирают те исходные вещества, из которых легче выделить необходимое вещество. Например, в лаборатории кислород не получают из воздуха. Это же относится и к получению водорода. Один из лабораторных способов получения водорода, который иногда применяется и в промышленности, — разложение воды электротоком.

Обычно в лаборатории водород получают взаимодействием цинка с соляной кислотой.

В промышленности Править

1.Электролиз водных растворов солей:

2NaCl + 2H2O → H2↑ + 2NaOH + Cl2

2.Пропускание паров воды над раскаленным коксом при температуре около 1000°C:

H2O + C ⇄ H2↑ + CO

3.Из природного газа.

Конверсия с водяным паром:
CH4 + H2OCO↑ + 3H2↑ (1000 °C)
Каталитическое окисление кислородом:
2CH4 + O2 ⇄ 2CO↑ + 4H2

4. Крекинг и риформинг углеводородов в процессе переработки нефти.

В лаборатории Править

1.Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную соляную кислоту:

Zn + 2HClZnCl2 + H2

2.Взаимодействие кальция с водой:

Ca + 2H2OCa(OH)2 + H2

3.Гидролиз гидридов:

NaH + H2ONaOH + H2

4.Действие щелочей на цинк или алюминий:

2Al + 2NaOH + 6H2O → 2Na[Al(OH)4] + 3H2
Zn + 2KOH + 2H2O → K2[Zn(OH)4] + H2

5.С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

2H3O+ + 2e- → H2↑ + 2H2O

См. также Править

Физические свойства Править

NASA Hydrogen spectrum

Эмиссионный спектр водорода

Водород может существовать в двух формах (модификациях) — в виде орто- и пара-водорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Concentration p-H2

Равновесная мольная концентрация пара-водорода

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно, что даёт возможность изучить свойства отдельных модификаций.


Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.


Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н.у.), температура кипения −252,76 °C, удельная теплота сгорания 120.9·106 Дж/кг, малорастворим в воде — 18,8 мл/л. Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.


Phase diagram of hydrogen

Фазовая диаграмма водорода<center>

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см3) и текучая (вязкость при −253 °C 13,8 спуаз). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.


Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см3 (при −262 °C) — снегоподобная масса, кристаллы гексогональной сингонии, пространственная группа P6/mmc, параметры ячейки a=3,75 c=6,12. При высоком давлении водород переходит в металлическое состояние.

Изотопы Править

Vapor Pressure of Hydrogen Isotopes

<center>Давление пара для различных изотопов водорода

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1H — протий (Н), 2Н — дейтерий (D), 3Н — тритий (радиоактивный) (T).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 %[2]. Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3Н (тритий) нестабилен. Его период полураспада составляет 12,32[2] лет. Тритий содержится в природе в очень малых количествах.

В литературе приводятся данные о изотопах водорода с массовыми числами 47. Однако, приводимые периоды полураспада 10−1510−23 сек, настолько малы, что вызывают оправданные сомнения в результатах.

Природный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D2 ещё меньше. Отношение концентраций HD и D2, примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов[3].

Температура
плавления,
K
Температура
кипения,
K
Тройная
точка,
K / kPa
Критическая
точка,
K / kPa
Плотность
жидкий / газ,
кг/м³
H2 13.95 20,39 13,96 / 7,3 32,98 / 1,31 70,811 / 1,316
HD 22,13 16,60 / 12,8 35,91 / 1,48 114,80 / 1,802
HT 22,92 17,63 / 17,7 37,13 / 1,57 158,62 / 2,310
D2 18,62 23,67 18,73 / 17,1 38,35 / 1,67 162,50 / 2,230
DT 24.38 19,71 / 19,4 39,42 / 1,77 211,54 / 2,694
T2 25,04 20,62 / 21,6 40,44 / 1,85 260,17 / 3,136

Дейтерий и тритий также имеют орто- и пара- модификации: p-D2, o-D2, p-T2, o-T2. Гетероизотопный водород (HD, HT, DT) не имеют орто- и пара- модификаций.

Химические свойства Править

Dis H

Доля диссоциировавших молекул водорода

Молекулы водорода Н2 довольно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Н2 = 2Н − 432 кДж

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

Ca + Н2 = СаН2

и с единственным неметаллом — фтором, образуя фтороводород:

F2 + H2 = 2HF

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

О2 + 2Н2 = 2О

Он может «отнимать» кислород от некоторых оксидов, например:

CuO + Н2 = Cu + Н2O

Записанное уравнение отражает восстановительные свойства водорода.

N2 + 3H2 → 2NH3

С галогенами образует галогеноводороды:

F2 + H2 → 2HF, реакция протекает со взрывом в темноте и при любой температуре,
Cl2 + H2 → 2HCl, реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

C + 2H2CH4

Взаимодействие со щелочными и щёлочноземельными металлами Править

При взаимодействии с активными металлами водород образует гидриды:

2Na + H2 → 2NaH
Ca + H2CaH2
Mg + H2MgH2

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

CaH2 + 2H2OCa(OH)2 + 2H2

Взаимодействие с оксидами металлов (как правило, d-элементов) Править

Оксиды восстанавливаются до металлов:

CuO + H2Cu + H2O
Fe2O3 + 3H2 → 2Fe + 3H2O
WO3 + 3H2W + 3H2O

Гидрирование органических соединений Править

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы навзывают реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

$ \mathsf{R\!\!-\!\!CH\!\!=\!\!CH\!\!-\!\!R'+H_2}\rightarrow\mathsf{R\!\!-\!\!CH_2\!\!-\!\!CH_2\!\!-\!\!R'} $

Геохимия водорода Править

На Земле содержание водорода понижено по сравнению с Солнцем, гигантскими планетами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением [4]. Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Особенности обращения Править

Hazard FF

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75(74) % объёмных.

Применение Править

Водород используют при синтезе аммиака NH3, хлороводорода HCl, метанола СН3ОН, при гидрокрекинге (крекинге в атмосфере водорода) природных углеводородов, как восстановитель при получении некоторых металлов. Гидрированием природных растительных масел получают твёрдый жир — маргарин. Жидкий водород находит применение как ракетное топливо, а также как хладагент. Смесь кислорода с водородом используют при газосварке.

Одно время высказывалось предположение, что в недалёком будущем основным источником получения энергии станет реакция горения водорода, и водородная энергетика вытеснит традиционные источники получения энергии (уголь, нефть и др.). При этом предполагалось, что для получения водорода в больших масштабах можно будет использовать электролиз воды. Электролиз воды — довольно энергоёмкий процесс, и в настоящее время получать водород электролизом в промышленных масштабах невыгодно. Но ожидалось, что электролиз будет основан на использовании среднетемпературной (500—600 °C) теплоты, которая в больших количествах возникает при работе атомных электростанций. Эта теплота имеет ограниченное применение, и возможности получения с её помощью водорода позволили бы решить как проблему экологии (при сгорании водорода на воздухе количество образующихся экологически вредных веществ минимально), так и проблему утилизации среднетемпературной теплоты.

Атомарный водород используется для Атомно-водородной сварки.

Химическая промышленность Править

Пищевая промышленность Править

Авиационная промышленность Править

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, когда дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием.

Топливо Править

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающей среды и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.


Примечания Править

  1. Редкол.:Кнунянц И. Л. (гл. ред.). Химическая энциклопедия: в 5 т.. — Москва: Советская энциклопедия, 1988. — Т. 1. — С. 400. — 623 с. — 100 000 экз.
  2. 2,0 2,1 G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra. The Nubase evaluation of nuclear and decay properties. Nuclear Physics A 729 (2003), pages 3-128.
  3. Züttel A.,Borgschulte A.,Schlapbach L. Hydrogen as a Future Energy Carrier.- Wiley-VCH Verlag GmbH & Co. KGaA, 2008. — ISBN 9783527308170
  4. Правилов А. М. Фотопроцессы в молекулярных газах. М.: Энергоатомиздат, 1992.

См. также Править

Литература Править

1. Начала химии. Современный курс для поступающих в вузы: Учебное пособие для вузов /Н.Е.Кузьменко, В.В.Еремин, В.А.Попков. - М.: Издательство "Экзамен",2005.
2. Учебный справочник школьника. Учебное издание. — М.: Дрофа, 2001.

Ссылки Править


Периодическая система элементов
H He
Li Be B C N O F Ne
Na Mg Al Si P S Cl Ar
K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr
Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe
Cs Ba * Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn
Fr Ra ** Rf Db Sg Bh Hs Mt Ds Rg Uub Uut Uuq Uup Uuh Uus Uuo
* La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
** Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr



  1. Википедия Водород адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Водород и найти в:

  1. Вокруг света адрес
  2. Академик адрес
  3. Астронет адрес
  4. Элементы адрес
  5. Научная Россия адрес
  6. Кругосвет адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниеадрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Водород 1», чтобы сохранить ее

Комментарии читателей:Править