Каждая точка в трехмерном евклидовом пространстве определяется тремя координатами.

Евкли́дово простра́нство (также Эвкли́дово простра́нство) (в математике), пространство, свойства которого описываются аксиомами евклидовой геометрии. В этом случае предполагается, что пространство имеет размерность равную 3.[1]

В более общем смысле Евкли́дово простра́нство называется n-мepное векторное пространство, в котором возможно ввести некоторые специальные координаты (декартовы) так, что метрика его будет определена следующим образом: если точка М имеет координаты (х1, х2,..., xn), а точка М* — координаты (y1*, y2*,..., yn*), то расстояние между этими точками:

,

где и .[2]

В современном понимании, в более общем смысле, оно может обозначать один из сходных и тесно связанных объектов, определённых ниже. Обычно -мерное евклидово пространство обозначается , хотя часто используется не вполне приемлемое обозначение .

1. Конечномерное гильбертово пространство, то есть конечномерное вещественное векторное пространство с введённым на нём (положительно определенным) скалярным произведением, порождающим норму:

,

в простейшем случае (евклидова норма):

где (в евклидовом пространстве всегда можно выбрать базис, в котором верен именно этот простейший вариант).

2. Метрическое пространство, соответствующее пространству описанному выше. То есть с метрикой, введённой по формуле:

,

где и .

3. Вообще любое предгильбертово пространство (пространство со скалярным произведением ).

Связанные определения[править | править код]

  • Под евклидовой метрикой может пониматься метрика, описанная выше, а также соответствующая риманова метрика.
  • Под локальной евклидовостью обычно имеют в виду то, что каждое касательное пространство риманова многообразия есть евклидово пространство со всеми вытекающими свойствами, например, возможностью (по гладкости метрики) ввести в малой окрестности точки координаты, в которых расстояние выражается (с точностью до какого-то порядка) в соответствии с описанным выше.
  • Метрическое пространство называют локально евклидовым также если возможно ввести на нём координаты, в которых метрика будет евклидовой (в смысле второго определения) всюду (или хотя бы на конечной области) — каковым, например, является риманово многообразие нулевой кривизны.

Вариации и обобщения[править | править код]

См. также[править | править код]

Примечания[править | править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.