Наука
Регистрация
Advertisement

Землетрясе́ние — быстрые смещения, колебания земной поверхности в результате подземных толчков. Небольшие землетрясения могут быть вызваны сильными взрывами, обрушениями сводов пустот подземных полостей — горных выработок, естественных пустот (карстовых пещер). Небольшие толчки может вызывать также подъём лавы при вулканических извержениях.

Но чаще всего землетрясения (а большие землетрясения всегда) обусловлены быстрым смещением участка земной коры как целого в момент пластической (хрупкой) деформации упруго напряженных пород в очаге землетрясения. Большинство очагов землетрясений возникает близ поверхности Земли. Само смещение происходит под действием упругих сил за счет разрядки-уменьшения упругих деформаций в объеме всего участка плиты в ходе его смещения к положению равновесия (к состоянию с минимальными упругими деформациями). Другими словами, землетрясение представляет собой быстрый переход потенциальной энергии, накопленной в упруго-деформированных (сжимаемых, сдвигаемых или растягиваемых) горных породах земных недр, в энергию колебаний этих самых недр (сейсмические волны), в энергию изменения структуры пород в очаге землетрясения. Этот переход происходит в момент превышения предела прочности пород в очаге землетрясения.

Предел прочности пород земной коры превышается в результате роста суммы сил, действующих на нее:

  1. Силы вязкого трения мантийных конвекционных потоков о земную кору;
  2. Архимедовой силы, действующая на легкую кору со стороны более тяжелой пластичной мантии;
  3. Лунно-солнечных приливов;
  4. Изменяющегося атмосферного давления.

Эти же силы приводят и к возрастанию потенциальной энергии упругой деформации пород в результате смещения плит под их действием. Плотность потенциальной энергии упругих деформаций под действием перечисленных сил нарастает практически во всем объеме плиты (по-разному в разных точках). В момент землетрясения потенциальная энергия упругой деформации в очаге землетрясения быстро (почти мгновенно) снижается до минимальной остаточной (чуть ли не до нуля). Тогда как в окрестностях очага за счет сдвига во время землетрясения плиты как целого упругие деформации несколько увеличиваются. Поэтому и случаются часто в окрестностях главного повторные землетрясения — афтершоки. Точно так же малые «предварительные» землетрясения — форшоки — могут спровоцировать большое в окрестностях первоначального малого землетрясения. Большое землетрясение (с большим сдвигом плиты) может вызвать последующие индуцированные землетрясения даже на удаленных краях плиты.

Из перечисленных сил первые две намного больше 3-ей и 4-й, но скорость их изменения намного меньше, чем скорость изменения приливных и атмосферных сил. Поэтому точное время прихода землетрясения (год, день, минута) определяется изменением атмосферного давления и приливными силами. Тогда как гораздо большие, но медленно меняющиеся силы вязкого трения и Архимедовы силы задают время прихода землетрясения (с очагом в данной точке) с точностью до столетий и тысячелетий. [1]

Ежегодно на всей Земле происходит около миллиона землетрясений, но большинство из них так незначительны, что они остаются незамеченными. Действительно сильные землетрясения, способные вызвать обширные разрушения, случаются на планете примерно раз в две недели. К счастью, большая их часть приходится на дно океанов, и поэтому не сопровождается катастрофическими последствиями (если землетрясение под океаном обходится без цунами).

Глубокофокусные землетрясения, очаги которых располагаются на глубинах до 700 км от поверхности, происходят на конвергентных границах литосферных плит и связаны с субдукцией.

Землетрясения наиболее известны по тем опустошениям, которые они способны произвести. Разрушения вызываются колебаниями почвы или гигантскими приливными волнами (цунами), возникающими при сейсмических смещениях на морском дне.

Сейсмические волны и их измерение[]

Скольжению пород вдоль разлома вначале препятствует трение. Вследствие этого, энергия, вызывающая движение, накапливается в форме упругих напряжений пород. Когда напряжение достигает критической точки, превышающей силу трения, происходит резкий разрыв пород с их взаимным смещением; накопленная энергия, освобождаясь, вызывает волновые колебания поверхности земли — землетрясения. Землетрясения могут возникать также при смятии пород в складки, когда величина упругого напряжения превосходит предел прочности пород и они раскалываются, образуя разлом.

Сейсмические волны, порождаемые землетрясениями, распространяются во все стороны от очага подобно звуковым волнам. Точка, в которой начинается подвижка пород называется фокусом, очагом или гипоцентром, а точка на земной поверхности над очагом — эпицентром землетрясения. Ударные волны распространяются во все стороны от очага, по мере удаления от него их интенсивность уменьшается.

Типы сейсмических волн[]

Сейсмические волны делятся на волны сжатия и волны сдвига.

  • Волны сжатия, или продольные сейсмические волны, вызывают колебания частиц пород, сквозь которые они проходят, вдоль направления распространения волны, обуславливая чередование участков сжатия и разрежения в породах. Скорость распространения волн сжатия в 1,7 раза больше скорости волн сдвига, поэтому их первыми регистрируют сейсмические станции. Волны сжатия также называют первичными (P-волны).
  • Волны сдвига, или поперечные сейсмические волны, заставляют частицы пород колебаться перпендикулярно направлению распространения волны. Волны сдвига также называют вторичными (S-волны).

Существует ещё третий тип упругих волн — длинные или поверхностные волны (L-волны). Именно они вызывают самые сильные разрушения.

Измерение силы и воздействий землетрясений[]

Для оценки и сравнения землетрясений используются шкала магнитуд и шкала интенсивности.

Шкала магнитуд[]

Шкала магнитуд различает землетрясения по величине магнитуды, которая является относительной энергетической характеристикой землетрясения. Существует несколько магнитуд и соответственно магнитудных шкал: локальная магнитуда (ML); магнитуда, определяемая по поверхностным волнам (Ms); магнитуда, определяемая по объемным волнам (mb); моментная магнитуда (Mw).

Наиболее популярной шкалой для оценки энергии землетрясений является локальная шкала магнитуд Рихтера. По этой шкале возрастанию магнитуды на единицу соответствует 30-кратное увеличение освобождённой сейсмической энергии. Землетрясение с магнитудой 2 едва ощутимо, тогда как магнитуда 7 отвечает нижней границе разрушительных землетрясений, охватывающих большие территории. Интенсивность землетрясений (не может быть оценена магнитудой) оценивается по тем повреждениям, которые они причиняют в населённых районах.

Шкала интенсивности[]

Интенсивность является качественной характеристикой землетрясения и указывает на характер и масштаб воздействия землетрясений на поверхность земли, на людей, животных, а также на естественные и искусственные сооружения в районе землетрясения. В мире используется несколько шкал интенсивности: в США — Модифицированная шкала Меркалли (MM), в Европе — Европейская макросейсмическая шкала (EMS), в Японии — шкала Шиндо (Shindo).


Шкала Медведева-Шпонхойера-Карника (МСК-64)

12-бальная шкала Медведева-Шпонхойера-Карника была разработана в 1964 году и получила широкое распространение в Европе и СССР. С 1996 года в странах Европейского Союза применяется более современная Европейская макросейсмическая шкала (EMS). МСК-64 лежит в основе СниП-11-7-81 «Строительство в сейсмических районах» и продолжает использоваться в России и странах СНГ.

Балл Сила землетрясения Краткая характеристика
1 Незаметное сотрясение почвы Отмечается только сейсмическими приборами.
2 Очень слабые толчки Отмечается сейсмическими приборами. Ощущается только отдельными людьми, находящимися в состоянии полного покоя.
3 Слабое Ощущается лишь небольшой частью населения.
4 Умеренное Распознаётся по лёгкому дребезжанию и колебанию предметов, посуды и оконных стёкол, скрипу дверей и стен.
5 Довольно сильное Под открытым небом ощущается многими, внутри домов — всеми. Общее сотрясение здания, колебание мебели. Маятники часов останавливаются. Трещины в оконных стёклах и штукатурке. Пробуждение спящих.
6 Сильное Ощущается всеми. Многие в испуге выбегают на улицу. Картины падают со стен. Отдельные куски штукатурки откалываются.
7 Очень сильное Повреждения (трещины) в стенах каменных домов. Антисейсмические, а также деревянные и плетневые постройки остаются невредимыми.
8 Разрушительное Трещины на крутых склонах и на сырой почве. Памятники сдвигаются с места или опрокидываются. Дома сильно повреждаются.
9 Опустошительное Сильное повреждение и разрушение каменных домов. Старые деревянные дома кривятся.
10 Уничтожающее Трещины в почве иногда до метра шириной. Оползни и обвалы со склонов. Разрушение каменных построек. Искривление железнодорожных рельсов.
11 Катастрофа Широкие трещины в поверхностных слоях земли. Многочисленные оползни и обвалы. Каменные дома почти совершенно разрушаются. Сильное искривление и выпучивание железнодорожных рельсов.
12 Сильная катастрофа Изменения в почве достигают огромных размеров. Многочисленные трещины, обвалы, оползни. Возникновение водопадов, подпруд на озёрах, отклонение течения рек. Ни одно сооружение не выдерживает.

Измерительные приборы[]

Для обнаружения и регистрации всех типов сейсмических волн используются специальные приборы — сейсмографы. В большинстве случаев сейсмограф имеет груз с пружинным прикреплением, который при землетрясении остаётся неподвижным, тогда как остальная часть прибора (корпус, опора) приходит в движение и смежается относительно груза. Одни сейсмографы чувствительны к горизонтальным движениям, другие — к вертикальным. Волны регистрируются вибрирующим пером на движущейся бумажной ленте. Существуют и электронные сейсмографы (без бумажной ленты).

Предсказание (прогнозирование) землетрясений[]

Непосредственно перед землетрясением поверхность Земли по обе стороны будущего очага землетрясения (разлома) испытывает упругую деформацию, близкую к предельной и которую можно измерить с помощью теодолита или лазерного луча. Иногда используют также наклономеры, чтобы установить, произошло ли искривление поверхности земли, и в какой степени.

В настоящее время введён в практику мониторинг больших площадей, то есть, непрерывное слежение за сейсмической активностью. Вблизи крупных разломов размещены приборы, информация от которых передаётся через спутники связи в центры, где подвергается обработке. Таким образом, выявляются даже очень малые движения земной поверхности и точно устанавливаются зоны накопления напряжений.

Другой метод основан на определении содержания воды в породах. В напряжённых породах происходит увеличение объёма пор, а тем самым и водосодержания. Поскольку в возникновении землетрясений грунтовые воды играют важную роль, сведения об уровне воды в колодцах на территории сейсмических областей имеют большое значение.

Задача предсказания и, тем более, точного прогнозирования землетрясений (подобного прогнозированию погоды как вычислению на основе адекватной модели) до сих пор не решена — не было работоспособной, физически обоснованной модели подготовки и начала («запуска») землетрясения. Недавно такая модель предложена, но пока еще не получила распространения (или уничтожающей критики) [2], [3]. Согласно этой модели при вычислении прогноза землетрясений должны быть учтены ВСЕ основные силы, действующие на земную кору. А именно: главные (но медленно меняющиеся) силы и «спусковые» (быстро меняющиеся) силы, «переполняющие чашу» — превышающие предел прочности коры при их «наслоении» на гораздо большие главные силы. То есть, прогнозирование точного времени прихода землетрясения базируется на учете уже достигнутого напряжения в различных точках земной коры (результата действия главных, больших, но медленно меняющихся сил Архимеда и сил вязкого трения мантийных конвекционных потоков) с учетом прогноза погоды (в части распределения атмосферного давления на земную поверхность) и расписания лунно-солнечных приливов.

Техногенные землетрясения[]

В последнее время появились сведения, что землетрясения могут вызываться деятельностью человека. Так, например, в районах затопления при строительстве крупных водохранилищ, усиливается тектоническая активность — увеличивается частота землетрясений и их магнитуда. Это связано с тем, что масса воды, накопленная в водохранилицах, своим весом увеличивает давление в горных породах, а просачивающаяся вода, понижает предел прочности горных пород. Аналогичные явления происходят при выемке больших количеств породы из шахт, карьеров, при строительстве крупных городов из привозных материалов.

Предупреждение землетрясений[]

Современные исследования показали, что провоцируя мелкие толчки в зоне разлома, можно ослабить давление, способное вызвать сильное землетрясение. Множество слабых землетрясений, уменьшая напряжения, накапливающиеся со временем, способно освободить столько же энергии, сколько одно разрушительное.

Одним из способов предупреждения сильных землетрясений служит закачка воды в скважины, расположенные вдоль линии разлома, в котором было обнаружено повышенное давление. Вода действует подобно смазке, уменьшая трение между породами в разломе и создавая условия для их плавной подвижки, сопровождаемой серией лёгких толчков.

Другим средством возбуждения мелких землетрясений являются взрывы вдоль поверхности разлома.

Предупреждение о землетрясении с помощью животных[]

Издавна известно, что люди использовали более чутких животных для предупреждения о возможной опасности.

Наиболее разрушительные землетрясения[]

  • 1556 — Ганьсу и Шеньси, Китай — 800 000 человек погибло
  • 1737Калькутта, Индия — 300 000 человек погибло
  • 1923Токио и Йокогама, Япония (8,3 балла по Рихтеру) — 143 000 человек погибло, около миллиона осталось без крова в результате возникших пожаров
  • 1948Ашхабад, Туркмения — 110 000 человек погибло
  • 26 апреля 1966Ташкент — (5.3 балла по Рихтеру) сильно разрушен город, 8 человек погибло.
  • 1976Таньшань, Северо-восточный Китай (8,2 по Рихтеру) — более 655 000 человек погибло
  • 1985 — Мексика (8,2 по Рихтеру) — более 7 500 человек погибло
  • 7 декабря 1988Армения, разрушены город Спитак и множество посёлков, 25 000 челевек погибло. Cтолько же получило увечья

См. также[]

  • Чуйское землетрясение

Ссылки[]

af:Aardbewing ar:زلزال be:Землятрус bg:Земетресение bn:ভূমিকম্প bs:Potres ca:Terratrèmol cs:Zemětřesení cv:Çĕр чĕтренĕвĕ cy:Daeargryn da:Jordskælv de:Erdbeben el:Σεισμός en:Earthquake eo:Tertremo es:Sismo et:Maavärin eu:Lurrikara fa:زمین‌لرزه fi:Maanjäristys fr:Tremblement de terre gd:Crith-thalmhainn gl:Terremoto gu:ધરતીકંપ he:רעידת אדמה hr:Potres hu:Földrengés id:Gempa bumi io:Ter-tremo is:Jarðskjálfti it:Terremoto ja:地震 ka:მიწისძვრა ko:지진 la:Terrae motus lb:Äerdbiewen lt:Žemės drebėjimas lv:Zemestrīce ml:ഭൂകമ്പം ms:Gempa bumi nah:Tlālollīn nl:Aardbeving nn:Jordskjelv no:Jordskjelv pl:Trzęsienie ziemi pt:Sismo qu:Pacha kuyuy ro:Cutremur scn:Tirrimotu sh:Potres simple:Earthquake sk:Zemetrasenie sl:Potres sr:Земљотрес sv:Jordbävning tg:Заминларза th:แผ่นดินไหว tl:Lindol tr:Deprem ug:يەر تەۋرەش uk:Землетрус ur:زلزلہ کي تاريخ vi:Động đất wa:Tronnmint d' tere yi:ערדציטערניש zh:地震 zh-min-nan:Tē-tāng zh-yue:地震

Advertisement