Таблица оптики, Энциклопедия, 1728

О́птика (от др.-греч. ὀπτική появление или взгляд) — раздел физики, изучающий поведение и свойства электромагнитных лучей и прежде всего света, и взаимодейсвие света с различными средами (веществом).

Оптическая наука — область многих прикладных дисциплин, междисциплинарных сфер, где широко применяются достижения прикладной оптики.

Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Эти участки спектра различаются не по своей природе, а по способу генерации и приёма излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.

Волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. Только, в зависимости от длины волны, на первый план выступают разные явления, разные методы исследования и разные практические применения. Поэтому на оптику нельзя смотреть как на замкнутую дисциплину, изучающую только видимую область спектра, отделенную от других областей чёткими границами. Закономерности и результаты, найденные в этих других областях, могут оказаться применимыми в видимой области спектра и наоборот.

Аналогичные явления встречаются в рентгеновском излучении, микроволновых печах, радио волнах и в виде других форм электромагнитной радиации. Оптика может, таким образом, быть расценена как ниша электромагнетизма. Некоторые оптические явления зависят от квантовой природы света, что связывает некоторые области оптики с квантовой механикой. Практически, большинство оптических явлений могут рассматриваться, как электромагнитные колебания, описанные Уравнениями Максвелла.

Из-за широкого использования науки света в жизни реального мира, области оптической науки и оптических разработок имеют тенденцию быть очень междисциплинарными. Оптическая наука — часть многих связанных дисциплин, включая электротехнику, физику, психологию, медицину (особенно офтальмологию и оптиметрию), и другие. Дополнительно, самое полное описание оптического поведения в физике излишне усложнено для большинства проблем. В итоге используются специфические упрощенные модели. Эти ограниченные модели соответственно описывают подмножества оптических явлений, игнорируя поведение, несоответствующее и/или необнаружимое в сфере интереса или спроса.[1][2]

Скорость света[править | править код]

Универсальным в физике понятием является скорость света . Её значение в вакууме представляет собой не только предельную скорость распространения электромагнитных колебаний любой частоты, но и вообще предельную скорость распространения любого воздействия на материальные объекты. При распространении света в различных средах скорость света уменьшается: , где есть показатель преломления среды, характеризующий её оптические свойства и зависящий от частоты света:

Корпускулярно-волновой дуализм[править | править код]

Оптика оказалась одним из первых разделов физики, где проявилась ограниченность классических представлений о природе. Была установлена двойственная природа света:

Исторические сведения[править | править код]

Фрагмент рукописи «Оптики» Ньютона с описанием одного из экспериментов с призмой.

Исторически на опытах с призмой было начато исследование первых спектров — оптических. Первым был Исаак Ньютон, который в своем труде «Оптика», вышедшем в 1704 г. опубликовал результаты своих опытов разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости, то есть получил спектры солнечного излучения и объяснил их природу, показав, что цвет есть собственное свойство света, а не вносится призмой, как утверждал Роджер Бэкон в XIII столетии.

Разделы оптики[править | править код]

Классическая оптика[править | править код]

Прежде как квантовая оптика выделилась в физике, оптика состояла главным образом из классического электромагнетизма и высокочастотного приближения, освещающих в то время стоящие проблемы. Классическая оптика делится на две главные ветви: геометрическая оптика и физическая оптика.

Геометрическая оптика[править | править код]

Геометрической оптикой или лучевой называется предельный случай волновой оптики, когда λ → 0, (где λ — длина волны). Геометрическая оптика описывает распространение света в виде луча. Работы Гюйгенса «Волновая теория света», которые были написаны под влиянием фундаментальных работ Ньютона, и вошли потом в «Оптику» оказали большое влияние на современников. Действительно, будучи приверженцем теории цветов Гука, он после работ Ньютона, восхищаясь их экспериментальной стороной, но не разделяя его теоретической интерпретации, пришел к выводу, что «явление окрашивания остается еще весьма таинственным из-за трудности объяснения этого разнообразия цветов с помощью какого-либо физического механизма». Поэтому он счёл наиболее целесообразным вообще не рассматривать вопроса о цветах в своем трактате. В своем небольшом трактате он первым рассмотрел прямолинейное распространение света, во второй части — отражение, в третьей — преломление, в четвертой — атмосферную рефракцию, в пятой — двойное лучепреломление и в шестой — формы линз.

Неудовлетворительное объяснение прямолинейного распространения света Гюйгенс возместил блестящим объяснением с помощью своего механизма частичного отражения, преломления и полного внутреннего отражения — явлений, интерпретация которых вынудила Ньютона осложнять свою теорию, нагромождая одну теорию на другую. По существу эти объяснения Гюйгенса и сейчас приводятся во всех учебниках. Новая теория обладала также тем преимуществом, что для объяснения преломления она согласно здравому смыслу требовала меньшей скорости в более плотной среде.

Время, за которое свет, пущенный с Земли, достигает Луны.

Световой луч в геометрической оптике — абстрактный объект (цель), который является перпендикулярным фронтом импульса фактических оптических волн. Геометрическая оптика принимает правила, которые обеспечивают возможность получить и размножить эти лучи через оптическую систему, дающая размножение фактического фронта импульса. Приняв это мы существенно упрощаем задачу оптики, но не в состоянии объяснить много важных оптических эффектов, типа дифракция и поляризация.

Геометрическая оптика часто упрощается, приняв параксиальное приближение, или «маленькое угловое приближение». Математическое поведение тогда становится линейным, позволяя оптические компоненты и системы излагаться простыми матрицами. Это приводит к методам Гауссовской оптики и параксиальному приближению, которые используются для нахождения свойства первого порядка оптических систем, типа приблизительного изображения (образа) и положений(позиций) объекта (цели) или его акцентирования.

Гауссовское распространение луча — расширение параксиальной оптики обеспечивает более точную модель последовательной(связаной) радиации как лазер лучей. Используя параксиальное приближение, это частично составляет(объясняет) дифракцию, позволяя произвести точные вычисления нормы(разряда), по которой лазерный луч расширяется с расстоянием, и определения минимального размера, который может принять сосредоточенный луч. Гауссовское распространение луча таким образом соединяет промежуток между геометрической и физической оптикой.

Физическая оптика[править | править код]

Трёхгранная призма раcщепляет белый свет, лучи с разной длиной волны преломляются по-разному

Единичная параболическая линза преломления Х-лучей

Физическая оптика или оптика волны основывается на принципе Гюйгенса и моделирует распространение сложных фронтов импульса через оптические системы, включая и амплитуду и фазу волны. Эта техника обычно применяется в цифровой форме на компьютере и может объяснять дифракцию, интерференцию, эффекты поляризации, так же как аберрацию, природу преломления Х-лучей и природу других сложных эффектов. Приближения все еще используются, однако, таким образом это не полная электромагнитная модель теории волны распространения света. Для полной модели (в настоящее время) требуется в вычислительном отношении решить много проблем. Хотя некоторые небольшие проблемы с использованием известных полных моделей волны могут решаться.[3]

Темы, связанные с классической оптикой[править | править код]

Современная оптика[править | править код]

Основные закономерности оптики[править | править код]

Электромагнитный спектр принято делить на радиоволны, инфракрасное, видимое, ультрафиолетовое, рентгеновское и гамма-излучения. Эти участки спектра различаются не по своей природе, а по способу генерации и приёма излучения. Поэтому между ними нет резких переходов, сами участки перекрываются, а границы между ними условны.

Волновые и квантовые закономерности являются общими для всего спектра электромагнитного излучения. В зависимости от длины волны, на первый план выступают разные явления, разные методы исследования и разные практические применения. Поэтому на оптику нельзя смотреть как на замкнутую дисциплину, изучающую только видимую область спектра, отделенную от других областей чёткими границами. Закономерности и результаты, найденные в этих других областях, могут оказаться применимыми в видимой области спектра и наоборот.

Современная оптика охватывает области оптической науки и разработок, которые стали популярными в 20-ом столетии. Эти области оптической науки в основном касаются электромагнитных или квантовых свойств света, но на самом деле включают другие области.

Рентгеновская оптика преломления[править | править код]

Линза из кремния для преломления Х-лучей

Единичная параболическая линза

Рентгеновская оптика преломления оптика, отличаются новыми свойствами и характкристиками, обеспечивающая преломление и фокусировку Х-лучей аналогично тонким линзам на базе преломляющих линз, фокусирующих оптических элементов, на базе киноформных преломляющих профилей и оптических элементов призм, полученных из кремния.

Нанооптика[править | править код]

Наносреда из электромагнитно-двойных пар золотых точек

В наносозданной среде получен эффект взамодействия электромагнитных волн с сильным магнитным ответом в зоне видимого спектра электромагнитных волн («видимых-легких частот»), включая полосу с отрицательным магнетизмом. Среда сделана из электромагнитночувствительных двойных пар золотых точек с геометрией и симметрией, тщательно разработанной на нанометрическом уровне. Возникающий магнитный ответ величиной 600-700 ТГц (1012 Гц) получается благодаря возбуждению антисимметричного плазменного резонанса. Высокочастотная проходимость проявляет себя качественно с новым эффектом оптического взаимодействия в данных наносредах. Это впервые показывает возможность применения электромагнетизма в зоне видимых частот и прокладывает путь в видимой оптике для получения оптических систем с лучшими показателями преломления, прозрачности к определённым лучам света.[4]

Физиологическая оптика[править | править код]

Глаз человека

Физиологическая оптика - наука о зрительном восприятии света глазами. Она объединяет сведения по биофизике, биохимии, биотехнологиям, психологии зрительного восприятия и др. В настоящее время выдающиеся достижения в области офтальматологии связаны с достижениями в биотехнологиях привело , например, в области создания фотосенсоров с матрицей на базе органических соединений, способных вживаться в атрофированную сетчатку глаза слепых и возвращать им зрение (См. Бионический глаз).

У истоков развития науки об оптике было Зрительное восприятие, зрение, строение глаза. Само название (от др.-греч. ὀπτική — в переводе оптика) определила область в физике под названием Оптика. Линза (биологическая)— не что иное как хрусталик глаза, сетчатка же глаза — основа появления светочувствительных фотоматериалов, глаз — это биологисеский фотоаппарат. Откуда направление в физике —Оптика закономерно изучает взаимодействие спектра видимых и примыкающих к ним электромагнитных лучей со средой и веществом.

Волоконная оптика[править | править код]

Световод

Волоконная оптика — раздел оптики, который изучает физические явления, возникающие и протекающие в оптических волокнах, включая продукцию отраслей точного машиностроения на основе оптических волокон.

Волоконная оптика — сочетание прикладной науки и производства, востребованные проектом на основе применения оптических волокон.

Темы, связанные с современной оптикой[править | править код]

См. также[править | править код]

Ссылки[править | править код]

  1. Раздел по оптике на сайте "Вся Физика".
  2. Б. М. Яворский и А. А. Детлаф Справочник по физике. — М.: Наука, 1971.
  3. Б. М. Яворский и А. А. Детлаф Справочник по физике. — М.: Наука, 1971
  4. http://onnes.ph.man.ac.uk/nano/index.html
Разделы науки оптики
Геометрическая оптика | Физическая оптика | Волновая оптика | Квантовая оптика | Нелинейная оптика | Теория испускания света | Теория взаимодействия света с веществом | Спектроскопия | Фироде | Квантовая оптика | Рентгеновская оптика преломления | Лазерная оптика | Физика лазеров | Фотометрия | Физиологическая оптика | Оптоэлектроника | Акустооптика | Оптические устройства
Разделы науки физики
Основные разделы Механика  · Термодинамика и Молекулярная физика · Электричество и Магнетизм  ·

Колебания и Волны · Квантовая физика  · Ядерная физика, Атомная физика и Физика элементарных частиц

Механика  · Классическая механика  · Специальная теория относительности · Релятивистская механика  · Квантовая механика
Термодинамика и молекулярная физика Физика плазмы  · Физика конденсированного состояния
Электродинамика Оптика
Колебания и волны Оптика  · Акустика · Радиофизика · Теория колебаний
Связь с другими науками Химическая физика  · Физическая химия  · Математическая физика · Астрофизика · Геофизика  · Биофизика  · Физика атмосферы  · Метрология  · Материаловедение
Другие разделы Космология  · Статистическая физика  · Физическая кинетика  · Квантовая теория поля  · Нелинейная динамика
Экспериментальная физика  · Теоретическая физика
Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.