ФЭНДОМ


Поляризация электромагнитных волн (ПЭВ) — одно из фундаментальных свойств оптического излучения (света), состоящее в искажении различных направлений в плоскости, перпендикулярной световому лучу (направлению распространения световой волны).[1]

ПЭВ — явление направленного колебания векторов напряженности электрического поля E или напряженности магнитного поля H.

Когерентное электромагнитное излучение может иметь:

Ellips polarisazii

Эллипс поляризации

  • Линейную поляризацию — в направлении, перпендикулярном направлению распространения волны;
  • Круговую поляризацию — правую либо левую, в зависимости от направления вращения вектора индукции;
  • Эллиптическую поляризацию — случай, промежуточный между круговой и линейными поляризациями.

Некогерентное излучение может не быть поляризованным, может быть полностью или частично поляризованным любым из указанных способов. В таком случае понятие поляризации понимается статистически.

При теоретическом рассмотрении поляризации волна полагается распространяющейся горизонтально. В этом случае можно рассматривать вертикальную и горизонтальную линейные поляризациии волны.

Для понимания явления поляризации света имело её проявление в эффекте интерференции света. Именно тот факт, что когда два световых луча, линейно поляризованных под прямым углом друг к другу, при простейшей постановке опыта не интерферируют, явился решающим доказательством поперечности световых волн (Френель, Араго, Т. Юнг, 1816—19). Поляризация света нашла естественное объяснение в электромагнитной теории света Дж. К. Максвелла (1865—73).

Поперечность световых волн (как и любых др. электромагнитных волн) выражается в том, что колеблющиеся в них векторы напряжённости электрического поля интерференции Е и напряжённости магнитного поля Н перпендикулярны направлению распространения волны. Е и Н выделяют (отсюда указанное выше неравноправие) определённые направления в пространстве, занятом волной. При этом Е и Н почти всегда взаимно перпендикулярны, поэтому для полного описания состояния поляризация света требуется знать поведение лишь одного из них. Обычно для этой цели выбирают вектор Е.

Круговая поляризацияПравить

Круговая поляризация — состояние распространяющейся электромагнитной волны (например, световой), при котором концы её электрического и магнитного векторов Е и Н в каждой точке пространства, где проходит волна, описывают окружности в плоскости, перпендикулярной направлению распространения волны.

В России и США используются спутниковы станции, оснащённые вращающимися антенами с круговой поляризацией. В Европе — навигационные телевизионные станции оснащены прямолинеёной поляпизацией. Исторически так сложилось, что раньше СССР использовал для ТВ вещания спутники серии «Молния», находящиеся на высокоэлептических орбитах. Для приема сигнала и слежения за спутниками использовались станции, оснащенные весьма большими антеннами и дорогим высокочувствительным оборудованием Орбита 1-3 (такая станция долго стояла в Хабаровске). Это было связано с тем, что спутники постоянно двигались, и в случае использования круговой поляризации не требовалось корректировать поляризацию в зависимости от положения спутника. В случае применения линейной поляризации, то ее пришлось бы постоянно вращать. Например, в США за стандарт аналогично принята круговая поляризация (например, Интелсаты везде применяют круговую поляризацию).

Использование линейной поляризации в европеёских странах вызвано тем, что всё спутниковое вещание в Европе началось в конце 80-х годов. Для него были использованы спутники, находящиеся на стабильных геостационарных орбитах и для вещания в Ku-band в Европе была принята линейная поляризация.

Не исключено, что в ближайшее время при вещании на Россию в C-band не будет линейной поляризации, т.к. в России для спутникового вещания в качестве стандарта принята круговая поляризация.

Теория явления Править

Электромагнитная волна может быть разложена (как теоретически, так и практически) на две поляризованные составляющие, например поляризованные вертикально и горизонтально. Возможны другие разложения, например по иной паре взаимно перпендикулярных направлений, или же на две составляющие, имеющие левую и правую круговую поляризацию. При попытке разложить линейно поляризованную волну по круговым поляризациям (или наоборот) возникнут две составляющие половинной интенсивности.

Как с квантовой, так и с классической точки зрения, поляризация может быть описана двумерным комплексным вектором (вектором Джонса). Поляризация фотона является одной из реализаций q-бита.


Свет солнца, являющийся тепловым излучением, не имеет поляризации, однако рассеянный свет неба приобретает частичную линейную поляризацию. Поляризация света меняется также при отражении. На этих фактах основаны применения поляризующих фильтров в фотографии и т. д.

Линейную поляризацию имеет обычно излучение антенн.

По изменению поляризации света при отражении от поверхности можно судить о структуре поверхности, оптических постоянных, толщине образца.

Если рассеянный свет поляризовать, то, используя поляризационный фильтр с иной поляризацией, можно ограничивать прохождение света. Интенсивность света прошедшего через поляризаторы подчиняется закону Малюса. На этом принципе работают жидкокристаллические экраны.


История открытия Править

Открытию поляризованных световых волн предшествовали работы многих учёных. В 1669 г. датский учёный Эразм Бартолин сообщил о своих опытах с кристаллами известкового шпата (CaCO3), чаще всего имеющими форму правильного ромбоэдра, которые привозили возвращающиеся из Исландии моряки. Он с удивлением обнаружил, что луч света при прохождении сквозь кристалл расщепляется на два луча (называемых теперь обыкновенным и необыкновенным). Бартолин провёл тщательные исследования обнаруженного им явления двойного лучепреломления, однако объяснения ему дать не смог.

Через двадцать лет после опытов Э. Бартолина его открытие привлекло внимание нидерландского учёного Христиана Гюйгенса. Он сам начал исследовать свойства кристаллов исландского шпата и дал объяснение явлению двойного лучепреломления на основе своей волновой теории света. При этом он ввёл важное понятие оптической оси кристалла, при вращении вокруг которой отсутствует анизотропия свойств кристалла, то есть их зависимость от направления (конечно, такой осью обладают далеко не все кристаллы).
В своих опытах Гюйгенс пошёл дальше Бартолина, пропуская оба луча, вышедшие из кристалла исландского шпата, сквозь второй такой же кристалл. Оказалось, что если оптические оси обоих кристаллов параллельны, то дальнейшего разложения этих лучей уже не происходит. Если же второй ромбоэдр повернуть на 180 градусов вокруг направления распространения обыкновенного луча, то при прохождении через второй кристалл необыкновенный луч претерпевает сдвиг в направлении, противоположном сдвигу в первом кристалле, и из такой системы оба луча выйдут соединёнными в один пучок. Выяснилось также, что в зависимости от величины угла между оптическими осями кристаллов изменяется интенсивность обыкновенного и необыкновенного лучей.

Эти исследования вплотную подвели Гюйгенса к открытию явления поляризации света, однако решающего шага он сделать не смог, поскольку световые волны в его теории предполагались продольными. Для объяснения опытов Х. Гюйгенса И. Ньютон, придерживавшийся корпускулярной теории света, выдвинул идею об отсутствии осевой симметрии светового луча и этим сделал важный шаг к пониманию поляризации света.

В 1808 г. французский физик Этьен Луи Малюс, глядя сквозь кусок исландского шпата на блестевшие в лучах заходящего солнца окна Люксембургского дворца в Париже, к своему удивлению заметил, что при определённом положении кристалла было видно только одно изображение. На основании этого и других опытов и опираясь на корпускулярную теорию света Ньютона, он предположил, что корпускулы в солнечном свете ориентированы беспорядочно, но после отражения от какой-либо поверхности или прохождения сквозь анизотропный кристалл они приобретают определённую ориентацию. Такой «упорядоченный» свет он назвал поляризованным.

Параметры Стокса Править

Sf puank

Изображение поляризации языком параметров Стокса на сфере Пуанкаре

В общем случае плоская монохроматическая волна имеет правую или левую эллиптическую поляризацию. Полная характеристика эллипса даётся тремя параметрами, например, полудлинами сторон прямоугольника, в который вписан эллипс поляризации $ A_1 $, $ A_2 $ и разностью фаз $ \phi $, либо полуосями эллипса $ a $, $ b $ и углом $ \psi $ между осью $ x $ и большой осью эллипса. Удобно описывать эллиптически поляризованную волну на основе параметров Стокса:

$ S_0=A^2_1+A^2_2 $, $ S_1=A^2_1-A^2_2 $,
$ ~S_2=2A_1 A_2 \cos \phi $, $ ~S_2=2A_1 A_2 \sin \phi $.

Независимыми являются только три из них, ибо справедливо тождество:

$ S^2_0=S^2_1+S^2_2+S^2_3 $.

Если ввести вспомогательный угол $ \chi $ , определяемый выражением $ \chi=\pm a/b $ (знак $ ~+ $ соответствует правой, а $ ~- $ — левой поляризации), то можно получить следующие выражения для параметров Стокса:

$ ~S_1=S_0 \cos (2\chi) \cos (2\psi) $,
$ ~S_2=S_0 \cos (2\chi) \sin (2\psi) $,
$ ~S_3=S_0 \sin (2\chi) $.

На основе этих формул можно характеризовать поляризацию световой волны наглядным геометрическим способом. При этом параметры Стокса $ ~S_1 $, $ ~S_2 $, $ ~S_3 $ интерпретируются, как декартовы координаты точки, лежащей на поверхности сферы радиуса $ ~S_0 $. Углы $ ~2\chi $ и $ ~2\psi $ имеют смысл сферических угловых координат этой точки. Такое геометрическое представление предложил Пуанкаре, поэтому эта сфера называется сферой Пуанкаре.

Наряду с $ ~S_1 $, $ ~S_2 $, $ ~S_3 $ используют также нормированные параметры Стокса $ ~s_1=S_1/S_0 $, $ ~s_2=S_2/S_0 $, $ ~s_3=S_3/S_0 $. Для поляризованного света $ ~s^2_1+s^2_2+s^2_3=1 $.

Использование явления поляризации светаПравить

Особенности взаимодействия поляризованного света с веществом позволили найти его широкое применение в научных исследованиях, в определении структуры твёрдых тел, строения биологических объектов (см., например, поляризационная микроскопия), состояний элементарных излучателей и их отдельных центров, ответственных за квантовые переходы, для получения информации о сильно удаленных (в частности, астрофизических) объектах. Вообще, поляризация света как существенно анизотропное свойство излучения, позволяет изучать все виды анизотропии вещества — поведение газообразных, жидких и твёрдых тел в полях анизотропных возмущений (механических, звуковых, электрических, световых), в структуре — в подавляющем большинстве — оптически анизотропных материалов, в технике (например, в машиностроении) — упругие напряжения в конструкциях (например, поляризационно-оптический метод исследования напряжений) и т.д.

Взаимодействие поляризованного света с веществом может приводить к оптической ориентации или к настройке генерации мощного поляризованного излучения в лазерах и др. С другой стороны, исследование деполяризации света при фотолюминесценции дает сведения о взаимодействии поглощающих и излучающих центров в частицах вещества, при рассеянии света — ценные данные о структуре и свойствах рассеивающих молекул или иных частиц, в других случаях — о протекании фазовых переходов и т.д. (См. также Флюоресцентный наноскоп).

Поляризация света широко используется в технике, например при необходимости плавной регулировки интенсивности светового пучка (см. Малюса закон), для усиления контраста и устранения световых бликов в фотографии, при создании светофильтров (например, поляризационных), модуляторов излучения (см. Модуляция света), служащих одними из основных элементов систем оптической локации и оптической связи для изучения протекания реакций, строения молекул, определения концентраций растворов (см. Поляриметрия, Сахариметрия) и др.

Поляризация светового излучения играет заметную роль в живой природе. Многие живые существа способны чувствовать поляризацию света, а некоторые насекомые (пчёлы, муравьи) ориентируются в пространстве по поляризованному (в результате рассеяния в атмосфере) свечению голубого неба. При определенных условиях к Поляризация света становится чувствительным и человеческий глаз (т. н. явление Хайдингера). [2]

См. также Править

Литература Править

  • Ахманов С. А., Никитин С. Ю. — Физическая оптика, 2 издание, M. — 2004.
  • Борн М., Вольф Э. — Основы оптики, 2 издание, исправленное, пер. с англ.,М. — 1973

Ссылки Править

  1. http://bse.sci-lib.com/article091314.html
  2. http://www.oval.ru/enc/56254.html