ФЭНДОМ


Dodecahedron

Додекаэдр

Правильный многогранник или платоново тело — это выпуклый многогранник, состоящий из одинаковых правильных многоугольников и обладающий пространственной симметрией.

Regular Hexahedron

Правильный гексаэдр (куб)

Определение Править

Многогранник называется правильным, если:

  1. он выпуклый;
  2. все его грани являются равными правильными многоугольниками;
  3. в каждой его вершине сходится одинаковое число рёбер.

Список правильных многогранников Править

Существует всего пять правильных многогранников:

Изображение Правильный многогранник Число сторон у грани Число рёбер, примыкающих к вершине Число вершин Число рёбер Число граней Тип пространственной симметрии
Tetrahedron Тетраэдр 3 3 4 6 4 Th
Octahedron Октаэдр 3 4 6 12 8 Oh
Icosahedron Икосаэдр 3 5 12 30 20 Ih
Hexahedron Гексаэдр или куб 4 3 8 12 6 Oh
Dodecahedron Додекаэдр 5 3 20 30 12 Ih

Название каждого многогранника происходит от греческого названия количества его граней и слова "грань".

Комбинаторные свойства Править

  • Отношение количества вершин правильного многогранника к количеству рёбер одной его грани равно отношению количества граней этого же многогранника к количеству рёбер, выходящих из одной его вершины. У тетраэдра это отношение равно 4:3, у гексаэдра и октаэдра — 2:1, а у додекаэдра и икосаэдра — 4:1.
  • Правильный многогранник может быть комбинаторно описан символом Шлефли {p, q}, где:
    p — число сторон каждой грани;
    q — число рёбер, сходящихся в каждой вершине.
Символы Шлефли для правильных многогранников приведены в следующей таблице:
Многогранник Вершины Рёбра Грани Символ Шлефли
тетраэдр Tetrahedron 464{3, 3}
куб Гексаэдр (куб) 8126{4, 3}
октаэдр Octahedron 6128{3, 4}
додекаэдр POV-Ray-Dodecahedron 203012{5, 3}
икосаэдр Икосаэдр 123020{3, 5}
  • Другой комбинаторной характеристикой многогранника, которую можно выразить через числа p и q, является общее количество вершин (В), рёбер (Р) и граней (Г). Поскольку любое ребро соединяет две вершины и лежит между двумя гранями, выполняются соотношения:
    $ p\Gamma = 2\mbox{P} = q\mbox{B}.\, $
Из этих соотношений и формулы Эйлера можно получить следующие выражения для В, Р и Г:
$ \mbox{B} = \frac{4p}{4 - (p-2)(q-2)},\quad \mbox{P} = \frac{2pq}{4 - (p-2)(q-2)},\quad \Gamma = \frac{4q}{4 - (p-2)(q-2)}. $

Геометрические свойства Править

Углы Править

С каждым правильным многогранником связаны определённые углы, характеризующие его свойства. Двугранный угол между смежными гранями правильного многогранника {p, q} задаётся формулой:

$ \sin{\theta\over 2} = \frac{\cos(\pi/q)}{\sin(\pi/p)}. $

Иногда удобнее пользоваться выражением через тангенс:

$ \operatorname{tg}\,\frac{\theta}{2} = \frac{\cos(\pi/q)}{\sin(\pi/h)}, $

где $ h $ принимает значения 4, 6, 6, 10 и 10 для тетраэдра, куба, октаэдра, додекаэдра и икосаэдра соответственно.

Угловой дефект при вершине многогранника – это разность между 2π и суммой углов между рёбрами каждой грани при этой вершине. Дефект $ \delta $ при любой вершине правильного многогранника:

$ \delta = 2\pi - q\pi\left(1-{2\over p}\right). $

По теореме Декарта, он равен $ 4\pi $ делённым на число вершин (т.е. суммарный дефект при всех вершинах равен $ 4\pi $).

Трёхмерным аналогом плоского угла является телесный угол. Телесный угол Ω при вершине правильного многогранника выражается через двугранный угол между смежными гранями этого многогранника по формуле:

$ \Omega = q\theta - (q-2)\pi.\, $

Телесный угол, стягиваемый гранью правильного многогранника, с вершиной в центре этого многогранника, равен телесному углу полной сферы ($ 4\pi $ стерадиан), делённому на число граней. Он также равен угловому дефекту дуального к данному многогранника.

Различные углы правильных многогранников приведены в следующей таблице. Числовые значения телесных углов даны в стерадианах. Константа $ \varphi=\tfrac{1+\sqrt{5}}{2} $золотое сечение.

Многогранник Двугранный угол
θ
$ \operatorname{tg}\frac{\theta}{2} $ Плоский угол между рёбрами при вершине Угловой дефект (δ) Телесный угол при вершине (Ω) Телесный угол, стягиваемый гранью
тетраэдр 70.53° $ 1\over{\sqrt 2} $ 60° $ \pi $ $ \arccos\left(\frac{23}{27}\right) $ $ \approx 0.551286 $ $ \pi $
куб 90° 1 90° $ \pi\over 2 $ $ \frac{\pi}{2} $ $ \approx 1.57080 $ $ 2\pi\over 3 $
октаэдр 109.47° √2 60°, 90° $ {2\pi}\over 3 $ $ 4\arcsin\left({1\over 3}\right) $ $ \approx 1.35935 $ $ \pi\over 2 $
додекаэдр 116.57° $ \varphi\, $ 108° $ \pi\over 5 $ $ \pi - \operatorname{arctg}\left(\frac{2}{11}\right) $ $ \approx 2.96174 $ $ \pi\over 3 $
икосаэдр 138.19° $ \varphi^2\, $ 60°, 108° $ \pi\over 3 $ $ 2\pi - 5\arcsin\left({2\over 3}\right) $ $ \approx 2.63455 $ $ \pi\over 5 $

Радиусы, площади и объёмы Править

С каждым правильным многогранником связаны три концентрические сферы:

  • Описанная сфера, проходящая через вершины многогранника;
  • Срединная сфера, касающаяся каждого его ребра в середине;
  • Вписанная сфера, касающаяся каждой его грани в её центре.

Радиусы описанной ($ R $) и вписанной ($ r $) сфер задаются формулами:

$ R = {a\over 2}\cdot\operatorname{tg}\frac{\pi}{q}\cdot\operatorname{tg}\frac{\theta}{2} $
$ r = {a\over 2}\cdot\operatorname{ctg}\frac{\pi}{p}\cdot\operatorname{tg}\frac{\theta}{2}, $

где θ - двугранный угол между смежными гранями многогранника. Радиус срединной сферы задаётся формулой:

$ \rho = \frac{a\cos(\pi/p)}{2\sin(\pi/h)}, $

где h - величина описанная выше, при определении двугранных углов (h = 4, 6, 6, 10 или 10). Отношения описанных радиусов к вписанным радиусам симметрично относительно p и q:

$ {R\over r} = \operatorname{tg}\frac{\pi}{p}\cdot\operatorname{tg}\frac{\pi}{q}. $

Площадь поверхности S правильного многогранника {p, q} вычисляется, как площадь правильного p-угольника, умноженная на число граней Г:

$ S = \left({a\over 2}\right)^2 \Gamma p\,\operatorname{ctg}\frac{\pi}{p}. $

Объём правильного многогранника вычисляется, как умноженный на число граней объём правильной пирамиды, основанием которой служит правильный p-угольник, а высотой — радиус вписанной сферы r:

$ V = {1\over 3}rS. $

Приведённая таблица содержит список различных радиусов, площадей поверхностей и объёмов правильных многогранников. Значение длины ребра a в таблице приравнены к 2.

Многогранник
(a = 2)
Радиус вписанной сферы (r) Радиус срединной сферы (ρ) Радиус описанной сферы (R) Площадь поверхности (S) Объём (V)
тетраэдр $ 1\over {\sqrt 6} $ $ 1\over {\sqrt 2} $ $ \sqrt{3\over 2} $ $ 4\sqrt 3 $ $ \frac{2\sqrt 2}{3} $
куб $ 1\, $ $ \sqrt 2 $ $ \sqrt 3 $ $ 24\, $ $ 8\, $
октаэдр $ \sqrt{2\over 3} $ $ 1\, $ $ \sqrt 2 $ $ 8\sqrt 3 $ $ \frac{8\sqrt 2}{3} $
додекаэдр $ \frac{\varphi^2}{\xi} $ $ \varphi^2 $ $ \sqrt 3\,\varphi $ $ 60\frac{\varphi}{\xi} $ $ 20\frac{\varphi^3}{\xi^2} $
икосаэдр $ \frac{\varphi^2}{\sqrt 3} $ $ \varphi $ $ \xi\varphi $ $ 20\sqrt 3 $ $ \frac{20\varphi^2}{3} $

Константы φ и ξ задаются выражениями

$ \varphi = 2\cos{\pi\over 5} = \frac{1+\sqrt 5}{2}\qquad\xi = 2\sin{\pi\over 5} = \sqrt{\frac{5-\sqrt 5}{2}} = 5^{1/4}\varphi^{-1/2}. $

Среди правильных многогранников как додекаэдр, так и икосаэдр представляют собой лучшее приближение к сфере. Икосаэдр имеет наибольшее число граней, наибольший двугранный угол и плотнее всего прижимается к своей вписанной сфере. С другой стороны, додекаэдр имеет наименьший угловой дефект, наибольший телесный угол при вершине и максимально заполняет свою описанную сферу.

История Править

Правильные многогранники известны с древнейших времён. Их орнаментные модели можно найти на резных каменных шарах, созданных в период позднего неолита, в Шотландии, как минимум за 1000 лет до Платона. В костях, которыми люди играли на заре цивилизации, уже угадываются формы правильных многогранников.

В значительной мере правильные многогранники были изучены древними греками. Некоторые источники (такие как Прокл Диадох) приписывают честь их открытия Пифагору. Другие утверждают, что ему были знакомы только тетраэдр, куб и додекаэдр, а честь открытия октаэдра и икосаэдра принадлежит Теэтету Афинскому, современнику Платона. В любом случае, Теэтет дал математическое описание всем пяти правильным многогранникам и первое известное доказательство того, что их ровно пять.

Правильные многогранники характерны для философии Платона, в честь которого и получили название «платоновы тела». Платон писал о них в своём трактате Тимей (360г до н. э.), где сопоставил каждую из четырёх стихий (землю, воздух, воду и огонь) определённому правильному многограннику. Земля сопоставлялась кубу, воздух — октаэдру, вода — икосаэдру, а огонь — тетраэдру. Для возникновения данных ассоциаций были следующие причины: жар огня ощущается чётко и остро (как маленькие тетраэдры); воздух состоит из октаэдров: его мельчайшие компоненты настолько гладкие, что их с трудом можно почувствовать; вода выливается, если её взять в руку, как будто она сделана из множества маленьких шариков (к которым ближе всего икосаэдры); в противоположность воде, совершенно непохожие на шар кубики составляют землю, что служит причиной тому, что земля рассыпается в руках, в противоположность плавному току воды. По поводу пятого элемента, додекаэдра, Платон сделал смутное замечание: «…его бог определил для Вселенной и прибегнул к нему в качестве образца». Аристотель добавил пятый элемент — эфир и постулировал, что небеса сделаны из этого элемента, но он не сопоставлял его платоновскому пятому элементу.

Евклид дал полное математическое описание правильных многогранников в последней, XIII книге Начал. Предложения 13—17 этой книги описывают структуру тетраэдра, октаэдра, куба, икосаэдра и додекаэдра в данном порядке. Для каждого многогранника Евклид нашёл отношение диаметра описанной сферы к длине ребра. В 18-м предложении утверждается, что не существует других правильных многогранников. Андреас Шпейзер отстаивал точку зрения, что построение пяти правильных многогранников является главной целью дедуктивной системы геометрии в том виде, как та была создана греками и канонизирована в «Началах» Евклида[1]. Большое количество информации XIII книги «Начал», возможно, взято из трудов Теэтета.

В XVI веке немецкий астроном Иоганн Кеплер пытался найти связь между пятью известными на тот момент планетами Солнечной системы (исключая Землю) и правильными многогранниками. В «Тайне мира», опубликованной в 1596 году, Кеплер изложил свою модель Солнечной системы. В ней пять правильных многогранников помещались один в другой и разделялись серией вписанных и описанных сфер. Каждая из шести сфер соответствовала одной из планет (Меркурию, Венере, Земле, Марсу, Юпитеру и Сатурну). Многогранники были расположены в следующем порядке (от внутреннего к внешнему): октаэдр, за ним икосаэдр, додекаэдр, тетраэдр и, наконец, куб. Таким образом, структура Солнечной системы и отношения расстояний между планетами определялись правильными многогранниками. Позже от оригинальной идеи Кеплера пришлось отказаться, но результатом его поисков стало открытие двух законов орбитальной динамики — законов Кеплера, — изменивших курс физики и астрономии, а также правильных звёздчатых многогранников (тел Кеплера-Пуансо).

В больших размерностях Править

105px 105px 105px 105px 105px 105px
  • Во всех пространствах размерности n > 4 существует только 3 типа правильных многогранников: n-мерный симплекс, n-мерный октаэдр и n-мерный куб (гиперкуб).

См. также Править

Примечания Править

  1. Герман Вейль. «Симметрия». Перевод с английского Б. В. Бирюкова и Ю. А. Данилова под редакцией Б. А. Розенфельда. Издательство «Наука». Москва. 1968. стр. 101

Ссылки Править



  1. Википедия Правильный многогранник адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Правильный многогранник и найти в:

  1. Вокруг света многогранник адрес
  2. Академик многогранник/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы многогранник+&search адрес
  5. Научная Россия многогранник&mode=2&sort=2 адрес
  6. Кругосвет многогранник&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниемногогранник адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Правильный многогранник 1», чтобы сохранить ее

Комментарии читателей:Править