ФЭНДОМ


Prism

Призма (от др.-греч. πρίσμα (лат. prisma) «нечто отпиленное») — многогранник, две грани которого являются конгруэнтными (равными) многоугольниками, лежащими в параллельных плоскостях, а остальные грани — параллелограммами, имеющими общие стороны с этими многоугольниками. Эти параллелограммы называются боковыми гранями призмы, а оставшиеся два многоугольника называются ее основаниями.

Призма является разновидностью цилиндра (в общем смысле).

Элементы призмы Править

Название Определение Обозначения на чертеже Чертеж
Основания Две грани, являющиеся конгруэнтными многоугольниками, лежащими в параллельных плоскостях. $ ABCDE $, $ KLMNP $
Prism-1
Боковые грани Все грани, кроме оснований. Каждая боковая грань обязательно является параллелограммом. $ ABLK $, $ BCML $, $ CDNM $, $ DEPN $, $ EAKP $
Боковая поверхность Объединение боковых граней.
Полная поверхность Объединение оснований и боковой поверхности.
Боковые ребра Общие стороны боковых граней. $ AK $, $ BL $, $ CM $, $ DN $, $ EP $
Высота Отрезок, соединяющий плоскости, в которых лежат основания призмы и перпендикулярный этим плоскостям. $ KR $
Диагональ


Отрезок, соединяющий две вершины призмы, не принадлежащие одной грани. $ BP $
Диагональная плоскость Плоскость, проходящая через боковое ребро призмы и диагональ основания.
Диагональное сечение Пересечение призмы и диагональной плоскости. В сечении образуется параллелограмм, в том числе его частные случаи — ромб, прямоугольник, квадрат. $ EBLP $
Перпендикулярное (ортогональное) сечение Пересечение призмы и плоскости, перпендикулярной её боковому ребру.

Свойства призмы Править

  • Основания призмы являются равными многоугольниками.
  • Боковые грани призмы являются параллелограммами.
  • Боковые ребра призмы параллельны и равны.
  • Объём призмы равен произведению её высоты на площадь основания:
$ V=S\cdot h $
  • Площадь полной поверхности призмы равна сумме площади её боковой поверхности и удвоенной площади основания.
  • Площадь боковой поверхности произвольной призмы $ S=P\cdot l $, где $ P $ — периметр перпендикулярного сечения, $ l $ — длина бокового ребра.
  • Площадь боковой поверхности прямой призмы $ S=P\cdot h $, где $ P $ — периметр основания призмы, $ h $ — высота призмы.
  • Перпендикулярное сечение перпендикулярно ко всем боковым рёбрам призмы.
  • Углы перпендикулярного сечения — это линейные углы двугранных углов при соответствующих боковых рёбрах.
  • Перпендикулярное сечение перпендикулярно ко всем боковым граням.

Виды призм Править

Призма, основанием которой является параллелограмм, называется параллелепипедом.
Прямая призма — это призма, у которой боковые ребра перпендикулярны плоскости основания. Другие призмы называются наклонными.
Правильная призма — это прямая призма, основанием которой является правильный многоугольник. Боковые грани правильной призмы — равные прямоугольники.
Правильная призма, боковые грани которой являются квадратами (высота которой равна стороне основания), является полуправильным многогранником.

См. также Править

Ссылки Править


  1. Википедия Призма (геометрия) адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Призма (геометрия) и найти в:

  1. Вокруг света (геометрия) адрес
  2. Академик (геометрия)/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы (геометрия)+&search адрес
  5. Научная Россия (геометрия)&mode=2&sort=2 адрес
  6. Кругосвет (геометрия)&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнание(геометрия) адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Призма (геометрия) 1», чтобы сохранить ее

Комментарии читателей:Править