Магнит, поднятый над высокотемпературным сверхпроводником, охлажденным жидким азотом

Сверхпроводи́мость — свойство некоторых материалов обладать строго нулевым[1] электрическим сопротивлением при достижении ими температуры ниже определённого значения. Существует множество чистых элементов, сплавов и керамик, переходящих в сверхпроводящее состояние. Температурный интервал перехода в сверхпроводящее состояние для чистых образцов не превышает тысячных долей Кельвина и поэтому имеет смысл определённое значение Тс — температуры перехода в сверхпроводящее состояние. Эта величина называется критической температурой перехода. Ширина интервала перехода зависит от неоднородности металла, в первую очередь — от наличия примесей и внутренних напряжений. Известные ныне температуры Тс изменяются в пределах от 0,0005 K у магния (Mg) до 23,2 К у интерметаллида ниобия и германия (Nb3Ge, в плёнке) и 39 К у диборида магния (MgB2) у низкотемпературных сверхпроводников (Тс ниже 77°К, температуры кипения жидкого азота), до примерно 135К у ртутьсодержащих высокотемпературных сверхпроводников. В настоящее время фаза HgBa2Ca2Cu3O8+d (Hg−1223) имеет наибольшее известное значение критической температуры — 135°К, причем при внешнем давлении 350 тысяч атмосфер температура перехода возрастает до 164°К, что лишь на 19°К уступает минимальной температуре, зарегистрированной в природных условиях на поверхности Земли. Таким образом, сверхпроводники в своём развитии прошли путь от металлической ртути (4.2°К) к ртутьсодержащим высокотемпературным сверхпроводникам (164°К).

История открытия[править | править код]

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4,2 К резко падает до нуля. Однако нулевое сопротивление — не единственная отличительная черта сверхпроводимости. Ещё из теории Друде известно, что проводимость металлов увеличивается с понижением температуры, то есть электрическое сопротивление стремится к нулю. Одним из главных отличий сверхпроводников от идеальных проводников является эффект Мейснера, открытый в 1933 году. Таким образом, открытие сверхпроводимости растянулось на двадцать с лишним лет.


Свойства сверхпроводников[править | править код]

Нулевое электрическое сопротивление[править | править код]

Файл:CERN-cables-p1030764.jpg

Электрические кабели для ускорителей в CERN: сверху обычные кабели для Большого электрон-позитронного коллайдера; внизу — сверхпроводящие для Большого адронного коллайдера.

Заготовка раздела
Этот раздел не завершён.
Вы поможете проекту, исправив и дополнив его.

Фазовый переход в сверхпроводящее состояние[править | править код]

Файл:776px-Cvandrhovst.png

Характер изменения теплоемкости (cv, синий график) и удельного сопротивления (ρ, зеленый), при фазовом переходе в сверхпроводящее состояние

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля при температуре перехода Тc теплота перехода (поглощения или выделения) обращается в нуль, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода. Когда же переход из сверхпроводящего состояния в нормальное осуществляется изменением приложенного магнитного поля, то тепло должно поглощаться (например, если образец теплоизолирован, то его температура понижается). А это соответствует фазовому переходу Ι рода. Для сверхпроводников ΙΙ рода переход из сверхпроводящего в нормальное состояние при любых условиях будет фазовым переходом ΙΙ рода.

Эффект Мейсснера[править | править код]

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейсснера, заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токов внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположнонаправленное внешнему, приложенному магнитному полю и компенсирующее его.

Достаточно сильное магнитное поле при данной температуре разрушает сверхпроводящее состояние вещества. Магнитное поле с напряжённостью Нc, которое при данной температуре вызывает переход вещества из сверхпроводящего состояния в нормальное, называется критическим полем. При уменьшении температуры сверхпроводника величина Нc возрастает. Зависимость величины критического поля от температуры с хорошей точностью описывается выражением , где  — критическое поле при нулевой температуре. Сверхпроводимость исчезает и при пропускании через сверхпроводник электрического тока с плотностью, большей, чем критическая jc, поскольку он создаёт магнитное поле, большее критического.

Эффект Литтла-Паркса[править | править код]

В 1962 году учёными Литтлом и Парксом было обнаружено, что температура перехода тонкостенного цилиндра малого радиуса в сверхпроводящее состояние периодически (с периодом равным кванту потока) зависит от величины магнитного потока. [2] Этот эффект является одним из проявлений макроскопической квантовой природы сверхпроводимости.[3][4]

Заготовка раздела
Этот раздел не завершён.
Вы поможете проекту, исправив и дополнив его.

Изотопический эффект[править | править код]

Изотопический эффект у сверхпроводников заключается в том, что температуры Тс обратно пропорциональны квадратным корням из атомных масс изотопов одного и того же сверхпроводящего металла.

Момент Лондона[править | править код]

Вращающийся сверхпроводник генерирует магнитное поле, точно выровненное с осью вращения, возникающий магнитный момент получил название «момент Лондона». Он применялся, в частности, в научном спутнике «Gravity Probe B», где измерялись магнитные поля четырёх сверхпроводящих гироскопов, чтобы определить их оси вращения. Поскольку роторами гироскопов служили практически идеально гладкие сферы, использование момента Лондона было одним из немногих способов определить их ось вращения.

орп[править | править код]

Когда сверхпроводник попадает в магнитное поле, это поле проникает в него в виде тонких потоков, называемых вихрями. Вокруг каждого такого вихря возникают электрические токи. Эти вихри тиражируют себя и рассеиваются, когда температура материала возрастает. Поскольку вихри имеют тенденцию прикрепляться к длинным тонким отверстиям в материале, называемым призматическими дефектами, исследователи предположили, что вихри будут вести себя иначе при наличии таких дефектов. И они выяснили: когда вихрей больше, чем отверстий, вихри начинают рассеиваться в два этапа вместо одного, так как температура повышается.[источник не указан 4208 дней]

Если удастся задержать процесс рассеивания вихревых потоков, то будет возможно добиться эффекта сверхпроводимости при более высоких температурах.[источник не указан 4208 дней]

Квантово-механическая теория[править | править код]

Квантово-механическая теория сверхпроводимости (теория БКШ) рассматривает это явление как сверхтекучесть бозе-эйнштейновского конденсата куперовских пар электронов в металле с присущим сверхтекучести отсутствием трения. Электроны проводимости движутся в сверхпроводнике беспрепятственно — без «трения» о неоднородности кристаллической решетки. Основная особенность сверхпроводников заключается в том, что в них возникает взаимное притяжение электронов с образованием электронных пар (так называемые куперовские пары). Причиной этого притяжения является дополнительное к кулоновскому отталкиванию взаимодействие между электронами, осуществляемое под воздействием кристаллической решётки и приводящее к притяжению электронов.

В квантовой теории металлов притяжение между электронами (обмен фононами) связывается с возникновением элементарных возбуждений кристаллической решётки. Электрон, движущийся в кристалле и взаимодействующий с другим электроном посредством решётки, переводит её в возбуждённое состояние. При переходе решётки в основное состояние излучается квант энергии звуковой частоты — фонон, который поглощается другим электроном. Притяжение между электронами можно представить как обмен электронов фононами, причём притяжение наиболее эффективно, если импульсы взаимодействующих электронов противоположно направленны.

Возникновение сверхпроводящего состояния вещества связано с возможностью образования в металле связанных пар электронов (куперовских пар). Оценка показывает, что электроны, образующие пару, находятся друг от друга на расстояниях порядка ста периодов кристаллической решётки. Вся электронная система сверхпроводника представляет собой сплочённое образование, простирающееся на громадные по атомным масштабам расстояния.

Если при сколь угодно низких температурах кулоновское отталкивание между электронами преобладает над притяжением, образующим пары, то вещество (металл или сплав) сохраняет обычные свойства. Если же при температуре Тc силы притяжения преобладают над силами отталкивания, то вещество переходит в сверхпроводящее состояние.

Важнейшей особенностью связанного в пары коллектива электронов в сверхпроводнике является невозможность обмена энергией между электронами и решёткой малыми порциями, меньшими чем определенная энергия. Это означает, что при движении электронов в кристаллической решётке не изменяется энергия электронов и вещество ведёт себя как сверхпроводник с нулевым удельным сопротивлением. Квантово-механическое рассмотрение показывает, что при этом не происходит рассеяния электронных волн на тепловых колебаниях решётки или примесях. А это и означает отсутствие электрического сопротивления.

Для того чтобы разрушить состояние сверхпроводимости, необходима затрата определенной энергии. При температуре Т = Тc происходит нарушение связанных состояний электронных пар, прекращается притяжение между электронами и состояние сверхпроводимости исчезает.

Применение сверхпроводимости[править | править код]

Файл:Flyingsuperconductor.ogg

Левитация YBCO в условиях сверхпроводимости

Достигнуты значительные успехи в получении высокотемпературной сверхпроводимости. На базе металлокерамики, например, состава YBa2Cu3Ox, получены вещества, для которых температура Тc перехода в сверхпроводящее состояние превышает 77 К (температуру сжижения азота).

Явление сверхпроводимости используется для получения сильных магнитных полей, поскольку при прохождении по сверхпроводнику сильных токов, создающих сильные магнитные поля, отсутствуют тепловые потери. Однако в связи с тем, что магнитное поле разрушает состояние сверхпроводимости, для получения сильных магнитных полей применяются т. н. сверхпроводники II рода, в которых возможно сосуществование сверхпроводимости и магнитного поля. В таких сверхпроводниках магнитное поле вызывает появление тонких нитей нормального металла, пронизывающих образец, каждая из которых несёт квант магнитного потока. Вещество же между нитями остаётся сверхпроводящим. Поскольку в сверхпроводнике II рода нет полного эффекта Мейснера, сверхпроводимость существует до гораздо больших значений магнитного поля Hc2. В технике применяются, в основном, следующие сверхпроводники:

Соединение Tc, K jc, А/см2 (Тл), при 4,2 К Bc, Тл (T, K)
NbTi 9,5-10,5 (3-8)·104 (5) 12,5-16,5 (1,2)
12 (4,2)
Nb3Sn 18,1-18,5 (1-8)·105 (0) 24,5-28 (0)
NbN 14,5-17,8 (2-5)·107 (18) 25 (1,2)
8-13 (4,2)

Существуют детекторы фотонов на сверхпроводниках. В одних используется наличие критического тока, используют также эффект Джозефсона, андреевское отражение и т. д. Так, существуют сверхпроводниковые однофотонные детекторы (SSPD)[5] для регистрации единичных фотонов ИК диапазона, имеющие ряд преимуществ перед детекторами аналогичного диапазона (ФЭУ и др.), использующими другие способы регистрации. Сравнительные характеристики наиболее распространенных детекторов ИК-диапазона, основанные не на свойствах сверхпроводимости (первые четыре), а также сверхпроводниковые детекторы (последние три):

Вид дектора Максимальная скорость счета, c-1 Квантовая эффективность, % , c-1[6] NEP Вт [7]
InGaAs PFD5W1KSF APS (Fujitsu)
R5509-43 PMT (Hamamatsu) 1
Si APD SPСM-AQR-16 (EG\&G) 0.01
Mepsicron-II (Quantar) 0.001 0.1 -
STJ 60 - -
TES 90 менее менее
SSPD 30 менее


Вихри в сверхпроводниках второго рода можно использовать в качестве ячеек памяти. Подобное применение уже нашли некоторые магнитные солитоны. Существуют и более сложные дву- и трёхмерные магнитные солитоны, напоминающие вихри в жидкостях, только роль линий тока в них играют линии, по которым выстраиваются элементарные магнитики (домены).

См. также[править | править код]

Ссылки[править | править код]

Логотип «Викисловаря»
В Викисловаре есть страница о термине «сверхпроводимость»

Примечания[править | править код]

  1. Здесь важно понять, что электросопротивление не становится «очень малым» или «близким к нулю», а исчезает полностью. Хотя часто употребляют термин «ниже приборного нуля».
  2. W. A. Little and R. D. Parks, Physical Review Letters, Vol.9, page 9, (1962).
  3. M.Tinkham, Phys.Rev. 1963,129, p.2413
  4. М.Тинкхам, Введение в сверхпроводимость. Атомиздат М.1980
  5. http://www.scontel.ru/ps_reseivers.html
  6. Число срабатываний детектора при отсутствии излучения
  7. NEP (Noise-equivalent power) -- эквивалентная мощность шума. Под эквивалентной мощностью шума понимают среднеквадратическое значение мощности флуктуаций светового потока, падающего на фотоприемник, при котором в фотоприемнике при отсутствии собственных шумов возникали бы флуктуации тока, соответствующие наблюдаемым флуктуациям, обусловленным собственным шумом.

Литература[править | править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.