Логические (без математических)[править | править код]

Парадоксы самореференции (самоотносимости)[править | править код]

Это хорошо известный (и хорошо изученный) класс противоречий, возникаемых из-за ссылки на самоё себя.

  • Парадокс Берри (англ.): Фраза «наименьшее число, которое нельзя описать менее, чем десятью словами» описывает это число девятью словами.
  • Парадокс Карри (англ.): «Если это предложение верно, то через неделю наступит конец света»
  • Парадокс Эпименида (англ.): Критянин говорит: «Все критяне — лжецы»
  • Парадокс исключений (англ.): «Если у каждого правила есть исключения, то каждое правило должно иметь хотя бы одно исключение, кроме этого» …а это не исключение к правилу, которое утверждает, что у каждого правила есть исключения?
  • Парадокс Греллинга-Нельсона (англ.): Является ли слово «гетерологичный», означающее «неприменимый к самому себе», гетерологичным словом? (Близко к Парадоксу Рассела)
  • Парадокс Гегеля: «История учит человека тому, что человек ничему не учится из истории»
  • Парадокс лжеца: «Это предложение ложно»
  • Комбинатор Y в λ-исчислении и комбинаторной логике был назван парадоксальным комбинатором так как он связан с самоотносимостью.
  • Парадокс Петрония: «Ограничивайте себя во всех вещах, даже в ограничении»
  • Парадокс Квина (англ.): «…влечёт за собой ложность, будучи добавленным к собственному цитированию» влечёт за собой ложность, будучи добавленным к собственному цитированию
  • Парадокс Эватла (софизм Эватла): Протагор взял ученика Эватла при условии, что тот ему заплатит, когда выиграет первое дело. Случилось так, что Протагор подал иск на Эватла за то, что тот ему долго не платит. Должен ли Эватл заплатить, если он выиграет это дело (хотя выигрыш означает, что Эватл ничего не должен Протагору)?
  • Парадокс Рассела: Содержит ли множество всех таких множеств, которые не содержат себя, самого себя? Рассел популяризовал его в форме парадокса брадобрея: «Брадобрей бреет всех людей, которые не бреются сами. Бреет ли он себя?»
  • Парадокс Ричарда (англ.): Если сопоставить все свойства чисел с числами, то можно определить такое свойство, которому не будет соответствовать никакое число.
  • Прикажите слуге не слушаться Вас. Не слушаясь Вас, он ослушается приказа, т.к. он исполняет его, не слушаясь Вас.

Неопределённые[править | править код]

  • Корабль Тесея (англ.) Если каждый элемент корабля был заменён хотя бы один раз, можно ли считать корабль прежним кораблём?
  • Парадокс кучи (англ.): В какой момент куча перестанет быть кучей, если отнимать от неё по одной песчинке? Или, в какой конкретно день какой-либо человек становится лысым?


Эвентологические[править | править код]

См. также: Категория:Эвентологические парадоксы

Математические и статистические[править | править код]

Файл:Monty open door.svg

Загадка Монти Холла : какую дверь вы выберете?

См. также: Категория:Математические парадоксы
  • Парадоксы пропорционального представительства в США (en): Некоторые системы представительства могут иметь последствия, идущие против интуиции:
  • Парадокс голосования (Парадокс Кондорсе/Arrow’s paradox (англ.)) Нельзя совместить все требования к избирательной системе в одной системе.
  • Закон Бенфорда (англ.): Во многих списках чисел из произвольных реальных источников, большинство чисел начинаются с цифры 1.
  • Парадокс лифта (англ.): Лифты чаще всего ходят в одном направлении — от середины здания вниз к подвалу и вверх к чердаку
  • Парадокс ожидания: Почему иногда приходится ждать автобус дольше, чем нужно. (пояснение смотрите в англ. статье Renewal theory)
  • Парадокс интересных чисел (англ.). Первое неинтересное число интересно само по себе этим фактом. Поэтому неинтересных чисел не существует.
  • Игра в нетранзитивные кости (англ.): существует набор из 3 костей А, В и С таких, что чаще всего на А выпадает бо́льшее число, чем на В; на В чаще выпадает бо́льшее число, чем на С; на С чаще выпадает бо́льшее число, чем на А.
  • Парадокс Линдли (англ.): маленькие ошибки в нулевой гипотезе сильно возрастают, если анализируются большие массивы данных, приводя к ложным, но одновременно точным со статистической точки зрения результатам.
  • Парадокс недоношенности (англ.): Низкий вес при рождении и курение матери приводят к большой смертности. Дети курящих родителей имеют более низкий вес при рождении, однако маловесящие дети курящих родителей имеют более низкую смертность, чем другие маловесящие дети.
  • Парадокс пропавшего доллара (англ.): Неправильная логика приводит к тому, что один доллар «пропадает».
  • Парадокс корреляции: Вполне возможно сделать ложные заключения из корреляции. К примеру, города с бо́льшим количеством церквей имеют больше преступлений, потому что оба фактора следуют из бо́льшего населения. Это называется ложной корреляцией.
  • Триада отрицательных корреляций в парадоксе голосования (Парадокс Кондорсе/Arrow’s paradox (англ.)): Избиратель 1 ранжирует 3-х кандидатов в порядке А, В, С; избиратель 2 - в порядке В, С, А; избиратель 3 - в порядке С, А, В. Таким образом, любые две трети избирателей согласны между собой в сравнительной оценке двух третей кандидатов. Но коэффициент ранговой корреляции Спирмена между предпочтениями любых двух избирателей из этой тройки отрицателен и равен -0,5. Отрицательные же коэффициенты корреляции между рангами предпочтений у разных людей характеризуют, по смыслу понятия корреляции, скорее несогласие между этими людьми, чем их согласие.
  • Феномен Уилла Роджерса (англ.): математическое понятие среднего, определённое как среднее арифметическое, или как медиана — неважно, приводит к парадоксальному результату — например, возможно переместить статью из Википедия в Викицитатник так, чтобы средняя длина статьи увеличилась на обоих сайтах!
  • Парадокс Райта (англ.): Ребёнок стареет быстрее, чем старик, так как удвоение возраста — более частое явление в начале процесса, чем в конце.

Вероятностные[править | править код]

См. также: Категория:Вероятностные парадоксы

Связанные со случайными процессами[править | править код]

Связанные с бесконечностью[править | править код]

Геометрические или топологические[править | править код]

Файл:Tarski.png

Парадокс Банаха — Тарского: Шар может быть разложен на несколько частей, из которых потом можно сложить два точно таких же шара.

  • Парадокс Банаха — Тарского: Возможно разрезать шар на 5 частей, сложить их по-другому и получится два шара такого же радиуса, как и первоначальный.
  • Рог Гавриила (англ.) или «труба Торричелли»: Простое тело, имеющее конечный объём, но бесконечную площадь поверхности. Множество Мандельброта и различные другие фракталы имеют конечную площадь, но бесконечный периметр. Более того на границе множества Мандельброта не существует двух различных точек, между которыми конечное расстояние по периметру, что можно понять так: если Вы пойдёте вдоль границы этого множества, Вы нисколько не сдвинетесь из одной точки.
  • Парадокс Хаусдорфа: Существует счётное подмножество C на сфере S такое, что S\C можно разбить на две копии самого себя.
  • Парадокс побережья (англ.): периметр континента не может быть корректно определён (не может быть сопоставлен конкретному числу)
Файл:MorinSurfaceFromTheTop.PNG

Парадокс Смейла утверждает, что можно вывернуть (с самопересечениями, но без складок) сферу в 3-мерном пространстве. Одна такая конструкция, Поверхность Морина (англ.), видна на рисунке.

Связанные с выбором[править | править код]

  • Парадокс Абилина (англ.): Бывает, что люди принимают решения основанные не на том, что они сами хотят, но на том, что они думают, что другие хотят. В результате получается, что каждый делает что-то, что никому на самом деле не нужно.
  • Буриданов осёл: Как можно совершить рациональный выбор между двумя вещами, имеющими одинаковую ценность?
  • Парадокс контроля (англ.): Человек не может быть свободен от контроля, ибо чтобы быть свободным от контроля, нужно контролировать себя.
  • "Вилка" Мортона (англ.): Выбор из двух плохих альтернатив («выбор из двух зол»).
  • Загадка Кавки о яде (англ.): Может ли человек быть намеренным выпить смертельный яд, если намерение — единственная вещь, которая нужна для получения награды?

Химические[править | править код]

  • SAR-парадокс (англ.): Исключения из правила, что малое изменение в молекуле влечёт за собой малое изменение в химическом поведении, часто очень глубоки по смыслу.
  • Парадокс Левинталя (англ.): Промежуток времени, за который протеиновая цепочка приходит к своему скрученному состоянию, на много порядков меньше, чем оно могло бы быть, если она просто перебирала все возможные конфигурации.

Физические[править | править код]

Смотрите статью Физические парадоксы (англ.).

Из теории относительности и квантовой механики[править | править код]

Связанные с путешествиями во времени[править | править код]

  • Парадокс происхождения (англ.) ставит вопрос о происхождении объектов или информации при путешествиях в прошлое.
  • Парадокс дедушки (англ.): Вы перемещаетесь в прошлое и убиваете своего дедушку до того, как он познакомился с Вашей бабушкой. Из-за этого Вы не сможете появиться на свет и, следовательно, не сможете убить своего дедушку.
  • Парадокс предопределения (англ.): Человек попадает в прошлое и брюхатит свою пра-пра-прабабушку. В результате получается череда потомков, включая родителя этого человека и его самого. Следовательно, если бы он не путешествовал в прошлое, его бы вообще не существовало.

Гидродинамические[править | править код]

Другие[править | править код]

Файл:Boyle'sSelfFlowingFlask.png

Один из "вечных двигателей": чаша Роберта Бойля, наполняющая себя.

Философские[править | править код]

  • Тотальная казнь, или парадокс смертной казни: Убийство в некоторых странах карается смертной казнью. Но совершая её, государство (то есть все его жители) становятся убийцами и должны быть приговорены к смерти.
  • Парадокс эпикурейцев, или Проблема зла (англ.): Кажется, что существование зла несовместимо с существованием всемогущего и заботливого Бога.
  • Парадокс Ньюкома - парадоксы всезнания:
    • Если существует знающее всё существо (Бог), то невозможно иметь свободную волю, так как это существо будет знать, что вы хотите предпринять, а значит вы не можете принять решение, потому что оно уже сделано до вас.
    • Почему можно выиграть у противника, знающего всё?
  • Парадокс Хаттона (англ.): Если кто-то спрашивает себя «Сплю ли я?», то это доказывает, что он спит, то что это доказывает во время бодрствования?
  • Парадокс либеральности (англ.): «Минимальная свобода» не является равновесной по Парето.
  • Аддитивность счастья (англ.): Что лучше: большая группа людей, живущая сносной жизнью, или небольшая, живущая счастливо?
  • Парадокс Мура (англ.): «Идёт дождь, но я не верю в это»
  •  (англ.): Если правда не существует, то утверждение "правда не существует" верно, что доказывает его неверность.
  • Парадокс всемогущества: Может ли всемогущее существо создать камень, который оно само не сможет поднять?
  • Довольно близок к предыдущему Парадокс непреодолимой силы (англ.): Что будет, если непреодолимая сила подействует на несдвигаемый объект? (Оба эти парадокса, после некоторого анализа, могут быть признаны парадоксами противоречивых посылок (англ.))
  • Парадокс гедонизма: Когда человек занимается только своим счастьем, он несчастен; но, занимаясь другими вещами, он может быть счастливым.
  • Апории Зенона (англ.): "Вы никогда не попадёте из точки А в точку Б, т.к. вы должны будете пройти половину пути, потом половину оставшейся половины, и так бесконечное число раз"

Экономические[править | править код]

См. также:  (англ.)

См. также[править | править код]


  1. Википедия Список парадоксов адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Список парадоксов и найти в:

  1. Вокруг света парадоксов адрес
  2. Академик парадоксов/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы парадоксов+&search адрес
  5. Научная Россия парадоксов&mode=2&sort=2 адрес
  6. Кругосвет парадоксов&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниепарадоксов адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Список парадоксов 1», чтобы сохранить ее

Комментарии читателей:[править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.