Теория чисел или высшая арифметика — раздел математики, изучающий натуральные числа и сходные объекты. В зависимости от используемых методов теорию чисел подразделяют на несколько подтеорий.

Элементарная теория чисел[править | править код]

В элементарной теории чисел, целые чи́сла изучаются без использования методов других разделов математики. Такие вопросы, как делимость целых чисел, алгоритм Евклида вычисления наибольшего общего делителя, разложение числа́ на простые множители, совершенные чи́сла, малая теорема Ферма́, теорема Эйлера относятся к этому разделу.

Аналитическая теория чисел[править | править код]

В аналитической теории чисел для вывода и доказательства утверждений о числах и числовых функциях используется мощный аппарат математического анализа. Большую роль в аналитической теории чисел играет метод тригонометрических сумм, позволяющий оценивать число решений тех или иных уравнений или систем уравнений в целых числах. Основы метода тригонометрических сумм разработал и впервые применил к задачам теории чисел И. М. Виноградов.

Первым успехом аналитической теории чисел было применение комплексного анализа в доказательстве теоремы о распределении простых чисел.

Наиболее известной и до сих пор не решенной проблемой аналитической теории чисел является доказательство гипотезы Римана о нулях дзета-функции, утверждающей, что все нетривиальные корни уравнения лежат на так называемой критической прямой .

Алгебраическая теория чисел[править | править код]

В алгебраической теории чисел понятие числа расширяется, в качестве алгебраических чисел рассматривают корни многочленов с рациональными коэффициентами. При этом аналогом целых чисел выступают целые алгебраические числа, то есть корни многочленов с целыми коэффициентами и старшим коэффициентом 1. В отличие от целых чисел в кольце целых алгебраических чисел не обязательно выполняется закон единственности разложения на простые множители. Алгебраическая теория чисел включает в себя такие разделы, как теорию дивизоров, теорию Галуа, теорию полей классов, дзета- и L-функции, когомологии групп и многое другое. Одним из основных приемов является вложение поля алгебраических чисел в свое пополнение по одной из метрик — архимедово, то есть вложение в поле вещественных или комплексных чисел, или неархимедово, то есть вложение в поле p-адических чисел.

Ссылки[править | править код]

  • К. Айерлэнд, М. Роузен Классическое введение в современную теорию чисел. Москва, «Мир», 1987.
  • З. И. Боревич, И. Р. Шафаревич Теория чисел. Москва, «Наука», 1972.
  • А. Я. Хинчин Три жемчужины теории чисел. Москва, «Наука», 1979.

  1. Википедия Теория чисел адрес
  2. Викисловарьадрес
  3. Викицитатникадрес
  4. Викиучебникадрес
  5. Викитекаадрес
  6. Викиновостиадрес
  7. Викиверситетадрес
  8. Викигидадрес

Выделить Теория чисел и найти в:

  1. Вокруг света чисел адрес
  2. Академик чисел/ru/ru/ адрес
  3. Астронет адрес
  4. Элементы чисел+&search адрес
  5. Научная Россия чисел&mode=2&sort=2 адрес
  6. Кругосвет чисел&results_per_page=10 адрес
  7. Научная Сеть
  8. Традицияадрес
  9. Циклопедияадрес
  10. Викизнаниечисел адрес
  1. Google
  2. Bing
  3. Yahoo
  4. Яндекс
  5. Mail.ru
  6. Рамблер
  7. Нигма.РФ
  8. Спутник
  9. Google Scholar
  10. Апорт
  11. Онлайн-переводчик
  12. Архив Интернета
  13. Научно-популярные фильмы на Яндексе
  14. Документальные фильмы
  1. Список ru-вики
  2. Вики-сайты на русском языке
  3. Список крупных русскоязычных википроектов
  4. Каталог wiki-сайтов
  5. Русскоязычные wiki-проекты
  6. Викизнание:Каталог wiki-сайтов
  7. Научно-популярные сайты в Интернете
  8. Лучшие научные сайты на нашем портале
  9. Лучшие научно-популярные сайты
  10. Каталог научно-познавательных сайтов
  11. НАУКА В РУНЕТЕ: каталог научных и научно-популярных сайтов

  • Страница 0 - краткая статья
  • Страница 1 - энциклопедическая статья
  • Разное - на страницах: 2 , 3 , 4 , 5
  • Прошу вносить вашу информацию в «Теория чисел 1», чтобы сохранить ее

Комментарии читателей:[править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.