Термодина́мика — наука о наиболее общих свойствах макроскопических физических систем, находящихся в состоянии термодинамического равновесия и о процессах перехода между этими состояниями; строится на основе фундаментальных принципов, начал, законов, которые являются обобщением многочисленных наблюдений и выполняются независимо от конкретной природы тел, образующих систему; закономерности и соотношения между физическими величинами, к которым приводит термодинамика, имеют универсальный характер; обоснование законов термодинамики, их связь с законами движения отдельных частиц даётся статистической физикой, которая позволяет выяснить границы применимости термодинамики — науки, занимающейся изучением наиболее общих законов преобразования и передачи энергии.

Разделы термодинамики[править | править код]

Стандартный курс термодинамики состоит из следующих разделов:

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа;
  • неэкстенсивная термодинамика;
  • применение термодинамики к нестандартным системам (например, термодинамика чёрных дыр).

Физический смысл термодинамики[править | править код]

Необходимость термодинамики[править | править код]

Почему потребовалось придумывать термодинамику? Логика достаточно прозрачна.

Нас окружают всевозможные макроскопические тела. Они обладают различными характеристиками. Каждое твердое тело имеет определенную массу, момент инерции, объём, форму. Оно может перемещаться в пространстве, вращаться, взаимодействовать через гравитацию с другими телами. Как следствие, оно может обладать кинетической и потенциальной энергией. Наука, изучающее такое движение, называется механикой.

Тело может иметь электрический заряд и магнитный момент, а значит может взаимодействовать с внешними электромагнитными полями. Наука, изучающая такое взаимодействие, называется классической электродинамикой.

Однако это ещё не все. Экспериментальный факт: тело может обладать внутренней энергией. Эту энергию можно увеличить механически (на уровне ощущений мы это называем «тело стало горячее»), и её можно отнять у тела («тело охладилось»). Итак, внутренняя энергия— объективная физическая реальность, и она обязана входить, в частности, в закон сохранения энергии.

Если у нас есть несколько взаимодействующих твердых тел, то механика даст ответ на вопрос, как эти тела будут двигаться. Если у нас есть заряженное тело, то электродинамика даст ответ на вопрос, как заряд будет распределен по телу. Однако у нас пока нет теории, которая ответит на вопрос, как внутренняя энергия распределена по телу. Но без ответа на этот вопрос нет полного физического описания макроскопического тела.

Мы понимаем, что в принципе внутренняя энергия может быть распределена по объёму тела как угодно. Однако тут приходит на помощь второй экспериментальный факт: все макроскопические тела и системы, будучи изолированы от внешнего воздействия, рано или поздно приходят в состояние внутреннего равновесия. Это состояние — единственно, а значит распределение внутренней энергии по объёму тоже единственно (предупреждая возможные возражения в дальнейшем: уже отсюда видно, что внутренняя энергия есть функция состояния).

Итак, мы приходим к пониманию, что у нас пока нет теории, которая дала бы ответ на вопрос, как распределена внутренняя энергия в макроскопическом теле в состоянии равновесия. Такую теорию необходимо создать для полноты картины. Эта теория и называется термодинамика.

Построение термодинамики из экстремального принципа[править | править код]

Как нам построить термодинамику? Заметим, что пока что все физические величины «чувствовали» только полную внутреннюю энергию тела, но не её распределение. Очевидно, нам необходимо ввести (постулировать!) какую-то новую величину, которая «чувствовала» бы распределение. Делается это следующим образом..

Введем новую величину, новую функцию состояния тела под названием энтропия. Эта энтропия зависит от таких макроскопических характеристик тела, как объем, количество вещества (то есть число молей), и, конечно, внутренняя энергия: . Постулируем, что энтропия — экстенсивная величина, то есть энтропия всей системы есть сумма энтропий подсистем. Тогда полная энтропия тела оказывается зависящей от того, как именно внутренняя энергия распределена по объему.

Если функция ограничена, то, очевидно, для каждой конечной системы имеется максимальное значение энтропии. Постулируем, что состояние внутреннего равновесия — это состояние с максимальной энтропией.

Все, если функция задана, то термодинамика системы построена. Все последующие термодинамические характеристики тела (температура, давление, химический потенциал и т. д.) — есть просто математические следствия. (В частности, температура связана с производной энтропии по внутренней энергии, и нулевое начало термодинамики следует из свойств функциональной зависимости .)

Комментарии[править | править код]

  • Подчеркнём, что термодинамика — это феноменологическая (описательная) теория макроскопических тел. Термодинамика ничего не знает про атомы и молекулы. Поэтому в рамках термодинамического подхода выражение для энтропии ниоткуда не выводится и сама энтропия никак не истолковывается. Теория, опирающаяся на молекулярное строение вещества, называется статистическая физика. Она, действительно, дает более глубокое обоснование термодинамики некоторых систем. Однако термодинамический подход, сам по себе, есть нечто, совершенно не требующее статистической физики.
  • Изложенный здесь взгляд на термодинамику не является самым распространённым. Обычно начинают с понятия температуры (которое тоже просто постулируется), выписывают первое начало термодинамики и т. д. Изложенный же выше подход кажется более прозрачным с точки зрения логики «конструирования» теории. Эти подходы абсолютно эквивалентны.
  • Мы показали, что термодинамика, как и многие другие физические теории, может быть сформулирована на основе экстремального принципа.
  • Мы сформулировали классическую термодинамику, то есть термодинамику для макроскопических экстенсивных систем, пришедших в состояние равновесия. Однако термодинамический подход, из-за своей простоты и строгости, можно попытаться применить и к системам, в которых классическая термодинамика неприменима.

См.также[править | править код]

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.