Файл:Fractal mandel full.png

Множество Мандельброта — классический образец фрактала

Фрактал (лат. fractus — дробленый) — термин, означающий геометрическую фигуру, обладающую свойством самоподобия, то есть составленную из нескольких частей, каждая из которых подобна всей фигуре целиком. В более широком смысле под фракталами понимают множества точек в евклидовом пространстве, имеющие дробную метрическую размерность (в смысле Минковского или Хаусдорфа), либо метрическую размерность, строго большую топологической.

Файл:Fractal Broccoli.jpg

Фрактальная форма подвида цветной капусты (Brassica cauliflora)

Следует отметить, что слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура обладает какими-либо из перечисленных ниже свойств:

  • Обладает нетривиальной структурой на всех шкалах. В этом отличие от регулярных фигур (таких, как окружность, эллипс, график гладкой функции): если мы рассмотрим небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.
  • Является самоподобной или приближённо самоподобной.
  • Обладает дробной метрической размерностью или метрической размерностью, превосходящей топологическую.

Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

История[править | править код]

Первые примеры самоподобных множеств с необычными свойствами появились в XIX веке (например, множество Кантора). Термин «фрактал» был введён Бенуа Мандельбротом в 1975 году и получил широкую популярность с выходом в 1977 году его книги «Фрактальная геометрия природы».

Примеры[править | править код]

Самоподобные множества с необычными свойствами в математике[править | править код]

Начиная с конца XIX века, в математике появляются примеры самоподобных объектов с патологическими с точки зрения классического анализа свойствами. К ним можно отнести следующие:

Рекурсивная процедура получения фрактальных кривых[править | править код]

Файл:Fractal koch.png

Построение кривой Коха

Существует простая рекурсивная процедура получения фрактальных кривых на плоскости. Зададим произвольную ломаную с конечным числом звеньев, называемую генератором. Далее, заменим в ней каждый отрезок генератором (точнее, ломаной, подобной генератору). В получившейся ломаной вновь заменим каждый отрезок генератором. Продолжая до бесконечности, в пределе получим фрактальную кривую. На рисунке справа приведены три первых шага этой процедуры для кривой Коха.

Примерами таких кривых служат:


Фракталы как неподвижные точки сжимающих отображений[править | править код]

Свойство самоподобия можно математически строго выразить следующим образом. Пусть сжимающие отображения плоскости. Рассмотрим следующее отображение на множестве всех компактных (замкнутых и ограниченных) подмножеств плоскости:

Можно показать, что отображение является сжимающим отображением на множестве компактов с метрикой Хаусдорфа. Следовательно, по теореме Банаха, это отображение имеет единственную неподвижную точку. Эта неподвижная точка и будет нашим фракталом.

Рекурсивная процедура получения фрактальных кривых, описанная выше, является частным случаем данной конструкции. В ней все отображения — отображения подобия, а — число звеньев генератора.

Для треугольника Серпинского и отображения , , гомотетии с центрами в вершинах правильного треугольника и коэффициентом 1/2. Легко видеть, что треугольник Серпинского переходит в себя при отображении .

В случае, когда отображения — преобразования подобия с коэффициентами , размерность фрактала (при некоторых дополнительных технических условиях) может быть вычислена как решение уравнения . Так, для треугольника Серпинского получаем .

По той же теореме Банаха, начав с любого компактного множества и применяя к нему итерации отображения , мы получим последовательность компактов, сходящихся (в смысле метрики Хаусдорфа) к нашему фракталу.

Фракталы в комплексной динамике[править | править код]

Множество Жюлиа́

Фракталы естественным образом возникают при изучении нелинейных динамических систем. Наиболее изучен случай, когда динамическая система задаётся итерациями многочлена или голоморфной функции комплексной переменной на плоскости. Первые исследования в этой области относятся к началу XX века и связаны с именами Фату и Жюлиа.

Пусть — многочлен, комплексное число и рассмотрим следующую последовательность:

.

Нас интересует поведение этой последовательности при . Эта последовательность может:

  • Стремиться к бесконечности;
  • Стремиться к конечному пределу;
  • Демонстрировать в пределе циклическое поведение, то есть поведение вида
  • Демонстрировать более сложное поведение.

Множества значений , для которых последовательность демонстрирует один конкретный тип поведения, а также множества точек бифуркации между различными типами, часто обладают фрактальными свойствами.

Так, множество Жюлиа на картинке справа — множество точек бифуркации для многочлена , то есть тех значений , для которых поведение последовательности может резко меняться при сколь угодно малых изменениях .

Другой вариант получения фрактальных множеств — введение параметра в многочлен и рассмотрение множества тех значений параметра, при которых последовательность демонстрирует определённое поведение при фиксированном . Так, множество Мандельброта — это множество всех , при которых для и не стремится к бесконечности.

Ещё один известный пример такого рода — бассейны Ньютона.

Популярно создание красивых графических образов на основе комплексной динамики путём раскрашивания точек плоскости в зависимости от поведения соответствующих динамических систем. Например, для дополнения множества Мандельброта можно раскрасить точки в зависимости от скорости стремления к бесконечности (определяемой, скажем, как наименьший номер , при котором превысит фиксированную большую величину ).

Биоморфы — фракталы, построенные на основе комплексной динамики и напоминающие живые организмы.

Стохастические фракталы[править | править код]

Файл:Fractal random.png

Рандомизированный фрактал на основе множества Жюлиа

Природные объекты часто имеют фрактальную форму. Для их моделирования могут применяться стохастические (случайные) фракталы. Примеры стохастических фракталов:

  • траектория броуновского движения на плоскости и в пространстве;
  • граница траектории броуновского движения на плоскости. В 2001 году Лоулер, Шрамм и Вернер доказали предположение Мандельброта о том, что её размерность равна 4/3.
  • эволюции Шрамма-Лёвнера — конформно-инвариантные фрактальные кривые, возникающие в критических двумерных моделях статистической механики, например, в модели Изинга и перколяции.
  • различные виды рандомизированных фракталов, то есть фракталов, полученных с помощью рекурсивной процедуры, в которую на каждом шаге введён случайный параметр. Плазма — пример использования такого фрактала в компьютерной графике.

Фрактальная монотипия, или стохатипия — направления в изобразительном искусстве, заключающиеся в получении изображения случайного фрактала.


Применение фракталов[править | править код]

Компьютерная графика[править | править код]

Фрактальное дерево

Файл:Julia set (highres 01).jpg

Фракталы широко применяются в компьютерной графике для построения изображений природных объектов, таких, как деревья, кусты, горные ландшафты, поверхности морей и так далее.

Анализ рынков[править | править код]

Последнее время фракталы стали популярным инструментом у трейдеров для анализа состояния биржевых рынков.

Физика и другие естественные науки[править | править код]

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

Литература[править | править код]

Среди литературных произведений находят такие, которые обладают текстуальной, структурной или семантической фрактальной природой. В текстуальных фракталах потенциально бесконечно повторяются элементы текста:

  • неразветвляющееся бесконечное дерево, тождественное само себе с любой итерации («У попа была собака…», «Притча о философе, которому снится, что он бабочка, которой снится, что она философ, которому снится…», «Ложно утверждение, что истинно утверждение, что ложно утверждение…»)
  • неразветвляющиеся бесконечные тексты с вариациями («У Пегги был весёлый гусь…») и тексты с наращениями («Дом, который построил Джек»).

В структурных фракталах схема текста потенциально фрактальна:

  • венок сонетов (15 стихотворений), венок венков сонетов (211 стихотворений), венок венков венков сонетов (2455 стихотворений)
  • «рассказы в рассказе» («Книга тысячи и одной ночи», Я.Потоцкий «Рукопись, найденная в Сарагоссе»)
  • предисловия, скрывающие авторство (У. Эко «Имя розы»)
  • Т. Стоппард «Розенкранц и Гильденстерн мертвы» (сцена с представлением перед королём).

В семантических и нарративных фракталах автор рассказывает о бесконечном подобии части целому:

  • Х. Л. Борхес «В кругу развалин»
  • Х. Кортасар «Жёлтый цветок»
  • Ж. Перек «Кунсткамера»

Фрактальные антенны[править | править код]

Использование фрактальной геометрии при проектировании антенных устройств было впервые применено американским инженером Натаном Коэном, который тогда жил в центре Бостона, где была запрещена установка внешних антенн на здания. Натан вырезал из алюминиевой фольги фигуру в форме кривой Коха и наклеил её на лист бумаги, затем присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И, хотя физические принципы работы такой антенны не изучены до сих пор, это не помешало Коэну основать собственную компанию и наладить их серийный выпуск.

Сжатие изображений[править | править код]

Файл:Fractal tree (Plate b - 3).jpg

Ещё одно фрактальное дерево

Существуют алгоритмы сжатия изображения с помощью фракталов. Они основаны на идее о том, что вместо самого изображения можно хранить сжимающее отображение, для которого это изображение (или некоторое близкое к нему) является неподвижной точкой. Один из вариантов данного алгоритма был использован фирмой Microsoft при издании своей энциклопедии, но большого распространения эти алгоритмы не получили.

Децентрализованные сети[править | править код]

Система назначения IP-адресов в сети Netsukuku использует принцип фрактального сжатия информации для компактного сохранения информации об узлах сети. Каждый узел сети Netsukuku хранит всего 4 Кб информации о состоянии соседних узлов, при этом любой новый узел подключается к общей сети без необходимости в центральном регулировании раздачи IP-адресов, что, например, характерно для сети Интернет. Таким образом, принцип фрактального сжатия информации гарантирует полностью децентрализованную, а следовательно, максимально устойчивую работу всей сети.

Файл:Young star )fractaldancer(.jpg


Fractal Xaos Astronira

Fractal XaoS

Fractal

Галерея[править | править код]

Фрактал Мандельброта

См. также[править | править код]

Ссылки[править | править код]

Программы для генерации фрактальных изображений[править | править код]

  • Incendia — фрактальный генератор в полноценной 3D графике (Donationware);
  • Ultra Fractal — пожалуй, самая мощная программа, предназначенная для создания и анимации изображений по фрактальному алгоритму;
  • Fractal Explorer — одна из лучших на сегодняшний день программ для создания изображений фракталов;
  • IFS Builder 3d — построение и анимация трехмерных IFS фракталов (Windows, Linux);
  • XaoS — многоплатформенный генератор фракталов, позволяет приближать и удалять картинку в реальном времени;
  • Fractint — очень мощная многоплатформенная программа, развитие которой, к сожалению, давно остановилось;
  • Chaoscope — программа трёхмерной визуализации странных аттракторов;
  • Apophysis — программа для создания fractal flames. Fractal flames является расширением IFS фракталов;
  • RPS/Fract — несложный бесплатный генератор фракталов для платформы Pocket PC (PDA);
  • P.Fract — несложный бесплатный генератор фракталов для платформы Palm (PDA);
  • EyeFract
  • Gnofract 4D
  • IFS Illusions — Искусственное искусство программа и галереи
  • Sterling2
  • IFS Engine - несложный генератор IFS-фракталов (с исходным кодом).

Сайты о фракталах[править | править код]

Литература[править | править код]

  • Абачиев С. К. Радужная фрактальность треугольника Паскаля // Сайт С. П. Курдюмова "Синергетика", раздел "Математические методы в синергетике". Статья размещена 9.04.2009 г.
Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.