Эллипс, его фокусы и главные оси

Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) — геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек и (называемых фокусами) постоянна и больше расстояния между фокусами, то есть

причем


Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой. Эллипс также можно описать как пересечение плоскости и кругового цилиндра или как ортогональную проекцию окружности на плоскость.

Связанные определения[править | править код]

Nuvola apps important recycle.svg
Эта статья или раздел нуждается в переработке.
Пожалуйста, улучшите статью в соответствии с правилами написания статей.
  • Отрезок AB, проходящий через фокусы эллипса, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются и
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Точки пересечения эллипса с осями являются его вершинами.
  • Расстояния и от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние называется фокальным расстоянием.
  • Диаметром называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
  • Эксцентриситетом эллипса называется отношение . Эксцентриситет (также обозначается ε) характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
  • Фокальным параметром называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: . Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент и эксцентриситет эллипса связаны соотношением

Свойства[править | править код]

  • Оптическое свойство. Если и — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой равен углу между этой касательной и прямой .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида.

Эллипс также можно описать как

Соотношения между элементами эллипса[править | править код]

Файл:Ellipse parameters.gif

Части эллипса (описание см. в разделе "Связанные определения")

  • - большая полуось;
  • - малая полуось;
  • - фокальное расстояние (полурасстояние между фокусами);
  • - фокальный параметр;
  • - перифокусное расстояние (минимальное расстояние от фокуса до точки на эллипсе);
  • - апофокусное расстояние (максимальное расстояние от фокуса до точки на эллипсе);


.













– большая полуось
– малая полуось
– фокальное расстояние
– фокальный параметр
– перифокусное расстояние
– апофокусное расстояние

Координатное представление[править | править код]

Каноническое уравнение[править | править код]

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат. Для определённости положим, что В этом случае величины и — соответственно, большая и малая полуоси эллипса.

Зная полуоси эллипса можно вычислить его фокальное расстояние и эксцентриситет:

Координаты фокусов эллипса:

Эллипс имеет две директрисы, уравнения которых можно записать как

Фокальный параметр (т.е. половина длины хорды, проходящей через фокус и перпендикулярной оси эллипса) равен

Фокальные радиусы, т. е. расстояния от фокусов до произвольной точки кривой

Уравнение диаметра, сопряжённого хордам с угловым коэффициентом

Уравнение касательных, проходящих через точку

Уравнение касательных, имеющих данный угловой коэффициент :

Уравнение нормали в точке

Параметрическое уравнение[править | править код]

Каноническое уравнение эллипса может быть параметризовано:

где — параметр уравнения.

Уравнение в полярных координатах[править | править код]

Если принять фокус эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид

где эксцентриситет, а — фокальный параметр. При положительном знаке перед второй фокус эллипса будет находиться в точке а при отрицательном — в точке .

Другое уравнение в полярных координатах:

Длина дуги эллипса[править | править код]

Длина дуги плоской линии определяется по формуле:

Воспользовавшись параметрическим представлением эллипса получаем следующее выражение:

После замены выражение для длины дуги принимает окончательный вид:

Получившийся интеграл принадлежит семейству эллиптических интегралов, которые в элементарных функциях не выражаются, и сводится к эллиптическому интегралу второго рода . В частности, периметр эллипса равен:

,

где полный эллиптический интеграл второго рода.

Приближённые формулы для периметра[править | править код]

YNOT: где Максимальная погрешность этой формулы ~0.3619 % при эксцентриситете эллипса ~0.979811 (соотношение осей ~1/5). Погрешность всегда положительная.

Очень приближенная формула

Площадь эллипса и его сегмента[править | править код]

Площадь эллипса вычисляется по формуле

Площадь сегмента между дугой, выпуклой влево, и хордой, проходящей через точки и

Построение эллипса[править | править код]

Пусть даны две взаимноперпендикулярные прямые (оси будущего эллипса) и два отрезка длиной a (большая полуось) и b (малая полуось). Точку пересечения прямых обозначим как O, это центр эллипса.

С помощью циркуля[править | править код]

  1. Раствором циркуля, равным a, с центром в точке O отметим на одной из прямых точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
  2. Раствором циркуля, равным a, с центром в точке Q1 (или Q2) отметим на отрезке P1Р2 точки F1 и F2. Полученные точки являются фокусами эллипса.
  3. На отрезке P1Р2 выберем произвольную точку T. Затем с помощью циркуля начертим две окружности: первую — радиуса, равным длине отрезка TP1, с центром в точке F1 и вторую радуса, равным длине отрезка TP2, с центром в точке F2. Точки пересечения этих окружностей принадлежат искомому эллипсу, т.к. сумма расстояний из обоих фокусов равна длине большой оси 2a.
  4. Повторяя необходимое число раз шаги предыдущего пункта, получим искомый эллипс.

С помощью циркуля и линейки[править | править код]

  1. Раствором циркуля, равным a, с центром в точке O отметим на одной из прямой точки P1 и Р2, а на второй прямой раствором, равным b — точки Q1 и Q2. Полученные точки являются вершинами эллипса, а отрезки P1Р2 и Q1Q2 — его большая и малая оси, соответственно.
  2. С помощью линейки проводим через точку O произвольную наклонную линию. Затем раствором циркуля, равным а, с центром в точке O отмечаем на ней точку S, а раствором, равным b — точку R.
  3. Затем из точки S опускаем перепендикуляр на прямую P1Р2. Для этого произвольным раствором циркуля (но бо́льшим, чем расстояние от точки до прямой), с центром в точке S отмечаем на отрезке P1Р2 две точки, переносим в них циркуль и отмечаем тем же радиусом точку персечения окружностей S'. Затем с помощью линейки соединяем точки S и S', это и есть искомый перпендикуляр.
  4. Аналогичным способом опускаем перепендикуляр из точки R на прямую Q1Q2.
  5. Точка пересечения построенных перпендикуляров принадлежит эллипсу.
  6. Повторяя необходимое число раз шаги четырёх предыдущих пунктов, получим искомый эллипс.

Ссылки[править | править код]

Литература[править | править код]

  • Корн Г., Корн Т. Свойства окружностей, эллипсов, Гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73. (см. ISBN )

См. также[править | править код]

Логотип «Викисловаря»
В Викисловаре есть страница о термине «эллипс»
Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA, если не указано иное.