ФЭНДОМ


RGB illumination

Аддитивное смешение цветов

RBG-LED

Разноцветные сверхъяркие светодиоды начала ХХI века

CIExy1931 sRGB gamut D65

Ограничение RGB по возможности передачи цветов

Barn grand tetons rgb separation

RGB (аббревиатура английских слов Red, Green, Blue — красный, зелёный, синий) — аддитивная цветовая модель, как правило описывающая способ синтеза цвета для цветовоспроизведения. В российской терминологии изредка можно встретить сокращение КЗС (красный, зелёный, синий).

Выбор основных цветов ни как не связан с особенностями физиологии восприятия цвета сетчаткой глаза, но основан на эффекте метамерии свойственному глазу человека. Цветовая модель RGB находит широкое применение в науке и технике.

Аддитивной модель называется потому, что цвета получаются путём добавления их при смешивании (англ. addition) к чёрному цвету. Если цвет экрана, освещённого цветным прожектором, обозначается в RGB как (r1, g1, b1), а цвет того же экрана, освещённого другим прожектором, — (r2, g2, b2), то при освещении двумя прожекторами цвет экрана будет обозначаться как (r1+r2, g1+g2, b1+b2).

Изображение в данной цветовой модели состоит из трёх каналов. При смешении основных цветов (основными цветами считаются красный, зелёный и синий) — например, синего (B) и красного (R), мы получаем пурпурный (M magenta), при смешении зеленого (G) и красного (R) — жёлтый (Y yellow), при смешении зеленого (G) и синего (B) — циановый (С cyan). При смешении всех трёх цветовых компонентов мы получаем белый цвет (W).

В телевизорах и мониторах применяются три электронные пушки и три типа люминофоров, (Светодиодов или светофильтров) для соответственно красного, зелёного и синего каналов.

Цветовая модель RGB имеет по многим тонам цвета более широкий цветовой охват (может представить более насыщенные цвета), чем типичный охват цветов CMYK, поэтому иногда изображения, контрастно выглядящие в RGB системе, значительно тускнеют в CMYK.[1]

История Править

Джеймс Максвелл предложил аддитивный синтез цвета как способ получения цветных изображений в 1861 году.[2]

Аддитивный синтез цветаПравить

Additivnii sintes zveta RGB

Рисунок Аддитивного синтеза цвета RGB

Чтобы сформировать цвет с помощью RGB модели, три цветных световых луча: красный, зеленый и синий (основные цвета) должны быть сведены в одной точке экрана (например эмиссией от черного экрана, или отражением от белого экрана). Каждый из трех лучей называют компонентом полученного цвета, и каждый из них может иметь произвольную интенсивность, от полностью отсутствующей до полностью входящей в смеси.

В модели цвета RGB, три цветовых луча сведённых вместе, создают ощущение того или иного заключительного цвета.[3],[4]

Нулевая интенсивность для каждого компонента даёт самый темный цвет (чёрный цвет), а полная интенсивность каждого дает ощущение белого цвета; естественность этого белого зависит от первичных источников света и если они должным образом уравновешены, то в результате получим - нейтральный чисто-белый цвет. При различной интенсивности составляющих компонентов, в результате возможно получить оттенки серого цвета, более темные или более светлые. Если интенсивность компонентов разная, то в результате получим оттенки различных цветов, более или менее насыщенных.

Вторичный цвет может быть сформирован суммой двух первичных цветов равной интенсивности, например: циан — зелёный+синий, фуксин - красный+голубой, и желтый - красный+зелёный. Каждый вторичный цвет - дополнение одного первичного цвета; при смешивании первичного цвета и его дополнительного вторичного цвета результатом будет ощущение — белого цвета (голубой и красный цвета, фуксин и зеленый, желтый и синий).

Сама модель цвета RGB не определяет то, что называется красным, зеленым, и синим в колориметрии, таким образом результаты смешивания цветов не определены как абсолютные, но они относительные по отношению к первичным цветам.

Определение Править

Цветовая модель RGB была изначально разработана для описания цвета на цветном мониторе, но поскольку мониторы разных моделей и производителей различаются, были предложены несколько альтернативных цветовых моделей, соответствующих «усредненному» монитору. К таким относятся, например, sRGB и Adobe RGB.

Цветовая модель RGB может использовать разные оттенки основных цветов, разную цветовую температуру (задание «белой точки»), и разный показатель гамма-коррекции.

Представление базисных цветов RGB согласно рекомендациям ITU, в пространстве XYZ: Цветовая температура белого цвета: 6500 кельвинов (дневной свет)

Красный: x=0.64 y=0.33 
Зелёный: x=0.29 y=0.60 
Синий:   x=0.15 y=0.06 

Матрицы для перевода цветов между системами RGB и XYZ (величину Y часто ставят в соответствие яркости при преобразовании изображения в чёрно-белое):

X = 0.431*R+0.342*G+0.178*B
Y = 0.222*R+0.707*G+0.071*B
Z = 0.020*R+0.130*G+0.939*B

R =  3.063*X-1.393*Y-0.476*Z
G = -0.969*X+1.876*Y+0.042*Z
B =  0.068*X-0.229*Y+1.069*Z

Числовое представление Править

RGB Cube Show lowgamma cutout b

RGB и на её базе XYZ как цветовая модель представлена в виде куба в виде графиков линейных уравнений

RGB farbwuerfel

RGB-цветовая модель представленная в виде куба как формирующая краски в виде графиков линейных уравнений

Для большинства приложений значения координат r, g и b можно считать принадлежащими отрезку [0,1], что представляет пространство RGB в виде куба 1×1×1, что составляет форму графиков двух и трёхкоординатных (стерео) линейных уравнений. (См. рис. 2a).

Цифры в преобразовании матрицы приведены точные, с числом разрядов, указанных в стандарты CIE.[5]: 259–259. DOI:<259::AID-COL18>3.0.CO;2-7 10.1002/(SICI)1520-6378(199808)23:4<259::AID-COL18>3.0.CO;2-7.

$ \begin{bmatrix}X\\Y\\Z\end{bmatrix}=\frac{1}{b_{21}} \begin{bmatrix} b_{11}и b_{12}и b_{13}\\ b_{21}и b_{22}и b_{23}\\ b_{31}и b_{32}и b_{33} \end{bmatrix} \begin{bmatrix}R\\G\\B\end{bmatrix}=\frac{1}{0.17697} \begin{bmatrix} 0.49&0.31&0.20\\ 0.17697&0.81240&0.01063\\ 0.00 и 0.01 и 0.99 \end{bmatrix} \begin{bmatrix}R\\G\\B\end{bmatrix} $

См. также Править

Примечания Править

  1. http://en.wikipedia.org/wiki/RGB_color_model
  2. Синтез цвета // Фотокинотехника: Энциклопедия / Главный редактор Е. А. Иофис. — М.: Советская энциклопедия, 1981.
  3. Charles A. Poynton (2003). Digital Video and HDTV: Algorithms and Interfaces. Morgan Kaufmann. ISBN 1558607927
  4. Nicholas Boughen (2003). Lightwave 3d 7.5 Lighting. Wordware Publishing, Inc. ISBN 1556223544. http://books.google.com/?id=Xsq4JiSssMoC&pg=PA216&dq=additive-color.
  5. (February 1997) "How the CIE 1931 Color-Matching Functions Were Derived from the Wright–Guild Data". Color Research and Application 22 (1): 11–23. DOI:<11::AID-COL4>3.0.CO;2-7 10.1002/(SICI)1520-6378(199702)22:1<11::AID-COL4>3.0.CO;2-7. and (August 1998) "Erratum: How the CIE 1931 Color-Matching Functions Were Derived from the Wright–Guild Data". Color Research and Application 23 (4): 259–259. DOI:<259::AID-COL18>3.0.CO;2-7 10.1002/(SICI)1520-6378(199808)23:4<259::AID-COL18>3.0.CO;2-7.

Ссылки Править

Цветовые модели
HLSColorSpace
RGB (цветовая модель)  • CMYK  • XYZ (цветовая модель)  • HSV (цветовая модель)  • HSL и HSV (цветовые модели)  • RYB  • LAB  • PMS (Пантон)  • LMS  • Манселла  • NCS  • RAL  • YUV  • YCbCr  • YPbPr  • YDbDr  • YIQ
Глаз и Зрение
Основные разделы Зрение,Глаз  • Анатомия глаза • Теории цветовосприятия  • Современные взгляды на цветное зрение
Зрение,Глаз Глаз  •

Глаз человека  • Зрение  • Цветное зрение  • Цветное зрение у птиц  • Эволюция цветного зрения  • Бинокулярное зрение  • Зрение в условиях слабого освещения  • Свет  • Цвет • Эффект Пуркинье  • Стереоскопия  • Зрительная система  • Зрение человека  • Дальтонизм  • Фотопигмент  • Опсины  • Зрительная кора  • Саккада  • Колориметрия  • Эффект Трослера  • Дендрит  • Денситометрия  • Денситометр

Анатомия глаза Фиброзная оболочка - Конъюнктива  · Склера  · Шлеммов канал Трабекулярная сеть  · Роговица  · Эндотелий роговицы  · Лимб Кератоциты

Сосудистая оболочка - Хориоидеа  · Радужная оболочка  · Зрачок  · Цилиарное тело Сетчатка глаза - Макула  · Центральная ямка сетчатки глаза  · Оптический диск  · Тапетум  · Слепое пятно  · Жёлтое пятно  · Передний сегмент - Передняя камера  · Хрусталик глаза  · Задняя камера Задний сегмент - Стекловидное тело  · Циннова связка  · Гиалоидный канал · Глазные мускулы  · Зрачковые мышцы  · Зрительный нерв  · Хиазма  • Зрительные отделы головного мозга  · Сетчатка глаза  · Колбочки (сетчатка глаза)  · Палочки (сетчатка глаза)  · Амакриновые клетки  · Цилиарная мышца  · Аккомодация (биология)

Теории цветовосприятия Теории цветового зрения  · Теории цветного зрения  · Религиозная гипотеза зрения  · Гипотеза М. В. Ломоносова о цветном зрении  · Теория цветовосприятия Иоганнеса Мюллера  · Теория Юнга - Гельмгольца  · Теория Геринга  · Психофизическая теория цветоощущения Георга Мюллера  · Теория Лэдд-Франклин  · Зонная теория Крисса  · Теория Кёнинга  · Гипотеза Г. Хартриджа  · Концепция М.Смирнова  · Модель П. Уолравена  · Теория цветного зрения Лэнда  · Трёхкомпонентная теория цветового зрения  • Теория многокомпонентного цветного зрения  · Оппонентная теория цветового зрения  • Нелинейная теория зрения