Наука
Advertisement

https://ru.wikipedia.org/wiki/%D0%97%D0%B2%D1%83%D0%BA


Механика сред (сплошных)
BernoullisLawDerivationDiagram
Сплошная среда
Классическая механика
Закон сохранения массы ·Закон сохранения импульса
Теория упругости
Напряжение · Тензор · Твёрдые тела · Упругость · Пластичность · Закон Гука · Реология · Вязкоэластичность
Гидродинамика
Жидкость · Гидростатика · Гидродинамика · Вязкость · Ньютоновская жидкость · Неньютоновская жидкость · Поверхностное натяжение
Основные уравнения
Уравнение непрерывности · Уравнение Эйлера · Уравнения Навье — Стокса · Уравнение диффузии · Закон Гука
Известные учёные
Ньютон · Гук
Бернулли · Эйлер · Коши · Стокс · Навье

Звук, в широком смысле — упругие волны, распространяющиеся в среде и создающие в ней механические колебания; в узком смысле — субъективное восприятие этих колебаний в воздухе специальным органом чувств человека и животных — ухом.

  • Чаще звук рассматривается как явление в воздухе, однако аналогичные колебания в жидкостях и твёрдых телах также именуются звуком.

Как и любая волна, звук характеризуется амплитудой и частотой. Считается, что человек слышит звуки в диапазоне частот от 16 Гц до 25 000 Гц. Звук ниже диапазона слышимости человека называют инфразвуком, выше до 1 ГГц — ультразвуком, от 1 ГГц до 10 ТГц — гиперзвуком. Среди слышимых звуков следует также особо выделить фонетичиские, речевые звуки и фонемы, из которых состоит устная речь, и музыкальные звуки, из которых состоит музыка.

Понятие о звуке[]

Thoth08BigasDrumEvansChalmette

Создание звука при вибрации мембраны этого барабана

Звуковые волны могут служить примером колебательного процесса. Всякое колебание связано с нарушением равновесного состояния системы и выражается в отклонении её характеристик от равновесных значений. Для звуковых колебаний такой характеристикой является давление в точке среды, а её отклонение — звуковым давлением.

Если произвести резкое смещение частиц упругой среды в одном месте, например, с помощью поршня, то в этом месте увеличится давление. Благодаря упругим связям частиц давление передаётся на соседние частицы, которые, в свою очередь, воздействуют на следующие, и область повышенного давления как бы перемещается в упругой среде. За областью повышенного давления следует область пониженного давления, и, таким образом, образуется ряд чередующихся областей сжатия и разряжения, распространяющихся в среде в виде волны. Каждая частица упругой среды в этом случае будет совершать колебательные движения.

В жидких и газообразных средах, где отсутствуют значительные колебания плотности, акустические волны имеют продольный характер, то есть направление колебания частиц совпадает с направлением перемещения волны. В твёрдых телах, помимо продольных деформаций, возникают также упругие деформации сдвига, обусловливающие возбуждение поперечных (сдвиговых) волн; в этом случае частицы совершают колебания перпендикулярно направлению распространения волны. Скорость распространения продольных волн значительно больше скорости распространения сдвиговых волн.

Восприятие звука[]

Ear

Ухо человека

‎Для людей слышимость обычно ограничивается частотами примерно от 12 Гц до 20 000Гц.[1]. Однако эти пределы точно не определенны. Верхний предел, вообще уменьшается с возрастом. Другие разновидности восприятия имеют различный диапазон слушания. Например, собаки могут чувствовать колебания выше, чем 20кГц. Как сигнал, воспринятый одними из главных чувств, звук используется в виде многих разновидностей для разных целей: чтобы обнаружить опасность при навигации, при нахождении хищников, для коммуникаций.

Атмосфера земли, вода, и фактически любое физическое явление, типа огня, дождь, ветер, прибой, или землетрясение, производят (и характеризуют), его уникальные звуки. Много разновидностей, типа лягушек, птицы, морские и земные млекопитающие, также снабжены специальными органми, чтобы производить звук.

Люди используют звук во время разговоров, пения. Кроме того, люди развили культуру и технологию (типа музыки, телефонии и радио), которая позволяет им производить, сделать запись, передавать звук.

Физические параметры звука[]

Продольные и поперечные волны[]

‎Звук, переданный через газы, плазму и жидкости, в качестве продольных волн, вызывается волнами сжатия. Через твёрдые тела это может быть передано в виде продольных и поперечных волн. Продольные звуковые волны — волны переменных отклонений давления от давления равновесия, вызывая местные области сжатия и разреженности, в то время как поперечные волны (в твердых телах) — волны переменного напряжения, появляющиеся в случае бокового напряжения смещения под прямым углом к направлению распространения.

Вопрос: "В какой среде периодически перемещается звуковая волна, и каким образом колеблется?"

Энергия, которую несет на себе звуковая волна, зависит от  потенциальной энергии дополнительного сжатия (в случае продольных волн) или бокового напряжения смещения (в случае поперечных волн), зависит от кинетической энергии колебаний среды.

Свойства звуковой волны и особенности[]

Звуковые волны характеризуются главными свойствами:

  • частота,
  • длина волны,
  • период,
  • амплитуда,
  • интенсивность,
  • скорость,
  • вектор волны (напрвление).

Поперечные волны, также известные как волны сечения, имеют дополнительную собственность поляризации.

Звуковые особенности могут зависеть от типа звуковых волн (продольный против поперечной) так же как от особенностей физических свойств среды передачи[цитата, необходимая].

Колебательные характеристики звука[]

Sinusoidalnie svukovie volni

Синусоидальные волны различных частот; донные волны имеют более высокие частоты, чем вышерасположенные. Горизонтальная ось представляет время.

Колебательная скорость измеряется в м/с или см/с.

В энергетическом отношении реальные колебательные системы характеризуются изменением энергии вследствие частичной её затраты на работу против сил трения и излучение в окружающее пространство. В упругой среде колебания постепенно затухают. Для характеристики затухающих колебаний используются коэффициент затухания (S), логарифмический декремент  и добротность (Q). Коэффициент затухания отражает быстроту убывания амплитуды с течением времени. Если обозначить время, в течение которого амплитуда уменьшается в е = 2,718 раза, через , то

S = 1/. Уменьшение амплитуды за один цикл характеризуется логарифмическим декрементом. Логарифмический декремент равен отношению периода колебаний ко времени затухания :  = T/

Если на колебательную систему с потерями действовать периодической силой, то возникают вынужденные колебания, характер которых в той или иной мере повторяет изменения внешней силы. Частота вынужденных колебаний не зависит от параметров колебательной системы. Напротив, амплитуда зависит от массы, механического сопротивления и гибкости системы. Такое явление, когда амплитуда колебательной скорости достигает максимального значения, называется механическим резонансом. При этом частота вынужденных колебаний совпадает с частотой собственных незатухающих колебаний механической системы. При частотах воздействия, значительно меньших резонансных, внешняя гармоническая сила уравновешивается практически только силой упругости. При частотах возбуждения, близких к резонансной, главную роль играют силы трения. При условии, когда частота внешнего воздействия значительно больше резонансной, поведение колебательной системы зависит от силы инерции или массы.

Свойство среды проводить акустическую энергию, в том числе и ультразвуковую, характеризуется акустическим сопротивлением. Акустическое сопротивление среды выражается отношением звуковой плотности к объёмной скорости ультразвуковых волн. Удельное акустическое сопротивление среды устанавливается соотношением амплитуды звукового давления в среде к амплитуде колебательной скорости её частиц. Чем больше акустическое сопротивление, тем выше степень сжатия и разряжения среды при данной амплитуде колебания частиц среды. Численно, удельное акустическое сопротивление среды (Z) находится как произведение плотности среды  на скорость (с) распространения в ней ультразвуковых волн. Z = •c Удельное акустическое сопротивление измеряется в Па•с/м (см) или дин•с/см3 (СГС); 1 Па•с/м = 10-1 дин • с/см3. Значение удельного акустического сопротивления среды часто выражается в г/с•см2, причём 1 г/с•см2 = 1 дин•с/см3. Акустическое сопротивление среды определяется поглощением, преломлением и отражением ультразвуковых волн. Звуковое или акустическое давление в среде представляет собой разность между мгновенным значением давления в данной точке среды при наличии звуковых колебаний и статического давления в той же точке при их отсутствии. Иными словами, звуковое давление есть переменное давление в среде, обусловленное акустическими колебаниями. Максимальное значение переменного акустического давления (амплитуда давления) может быть рассчитано через амплитуду колебания частиц: P = 2fcA. где Р — максимальное акустическое давление (амплитуда давления); f - частота; с - скорость распространения ультразвука;  - плотность среды; А - амплитуда колебания частиц среды. На расстоянии в половину длины волны (/2) амплитудное значение давления из положительного становится отрицательным, то есть разница давлений в двух точках, отстоящих друг от друга на /2 пути распространения волны, равна 2Р. Для выражения звукового давления в единицах СИ используется Паскаль (Па), равный давлению в один ньютон на метр квадратный (Н/м2). Звуковое давление в системе СГС измеряется в дин/см2; 1 дин/см2 = 10-1Па = 10-1Н/м2. Наряду с указанными единицами часто пользуются внесистемными единицами давления - атмосфера (атм) и техническая атмосфера (ат), при этом 1 ат = 0,98o106 дин/см2 = 0,98o105 Н/м2. Иногда применяется единица, называемая баром или микробаром (акустическим баром); 1 бар = 106 дин/см2. Давление, оказываемое на частицы среды при распространении волны, является результатом действия упругих и инерционных сил. Последние вызываются ускорениями, величина которых также растёт в течение периода от нуля до максимума (амплитудное значение ускорения). Кроме того, в течение периода ускорение меняет свой знак. Максимальные значения величин ускорения и давления, возникающие в среде при прохождении в ней ультразвуковых волн, для данной частицы не совпадают во времени. В момент, когда перепад ускорения достигает своего максимума, перепад давления становится равным нулю. Амплитудное значение ускорения (а) определяется выражением: a = 2A = (2f)2 A Если бегущие ультразвуковые волны наталкиваются на препятствие, оно испытывает не только переменное давление, но и постоянное. Возникающие при прохождении ультразвуковых волн участки сгущения и разряжения среды создают добавочные изменения давления в среде по отношению к окружающему её внешнему давлению. Такое добавочное внешнее давление носит название давления излучения (радиационного давления). Оно служит причиной того, что при переходе ультразвуковых волн через границу жидкости с воздухом образуются фонтанчики жидкости и происходит отрыв отдельных капелек от поверхности. Этот механизм нашел применение в образовании аэрозолей лекарственных веществ. Радиационное давление часто используется при измерении мощности ультразвуковых колебаний в специальных измерителях - ультразвуковых весах.

Звуковой уровень давления[]

Звуковое давление определено как различие между средним местным давлением средней внешней стороны звуковой волны, в которой это происходит через (в данном пункте и данном времени) и давлением, найденном в пределах звуковой волны непосредственно в пределах той же самой среды. Квадрат этого различия (то есть квадрат отклонения от давления равновесия) обычно усредняется в течение долгого времени и/или место, и квадратный корень такого среднего числа применён, чтобы получить среднюю квадратную (Среднеквадратическую) ценность корня.

Поскольку человеческое ухо может обнаружить звуки с очень широким диапазоном амплитуд, звуковое давление часто измеряется как уровень в логарифмическом масштабе децибела. Звуковой уровень давления (ЗУД) или Lp определен как:

где:

  • p — среднеквадратичное звуковое давление,
  • — давлением звука ссылки.

Обычно используемые давления звука ссылки, определенные в американском стандарте American National Standards Institute ANSI S1.1-1994, являются 20 МПа в воздухе и 1 МПа в воде. Без указанного давления звука ссылки, ценность, выраженная в децибелах не может представить звуковой уровень давления. Так как человеческое ухо не имеет плоского спектрального ответа, звуковые давления — часто взвешенная частота так, чтобы взвешенный уровень соответствовал воспринятым уровням более близко. Международная Электротехническая Комиссия (Международная Электротехническая Комиссия) определила несколько схем надбавки. A—надбавка пытается соответствовать ответу человеческого уха к шуму, и взвешенные звуковые уровни давления помечены dBA. C—надбавка используется, чтобы измерить пиковые уровни.

Распространение ультразвука[]

Распространение ультразвука - это процесс перемещения в пространстве и во времени возмущений, имеющих место в звуковой волне. Звуковая волна распространяется в веществе, находящемся в газообразном, жидком или твёрдом состоянии, в том же направлении, в котором происходит смещение частиц этого вещества, то есть она вызывает деформацию среды. Деформация заключается в том, что происходит последовательное разряжение и сжатие определённых объёмов среды, причём расстояние между двумя соседними областями соответствует длине ультразвуковой волны. Чем больше удельное акустическое сопротивление среды, тем больше степень сжатия и разряжения среды при данной амплитуде колебаний. Частицы среды, участвующие в передаче энергии волны, колеблются около положения своего равновесия. Скорость, с которой частицы колеблются около среднего положения равновесия называется колебательной скоростью. Колебательная скорость частиц изменяется согласно уравнению: V = U sin (2ft + G), где V - величина колебательной скорости; U - амплитуда колебательной скорости; f - частота ультразвука; t - время; G - разность фаз между колебательной скоростью частиц и переменным акустическим давлением. Амплитуда колебательной скорости характеризует максимальную скорость, с которой частицы среды движутся в процессе колебаний, и определяется частотой колебаний и амплитудой смещения частиц среды. U = 2fA, где А — амплитуда смещения частиц среды.

Дифракция, интерференция[]

При распространении ультразвуковых волн возможны явления дифракции, интерференции и отражения.

Дифракция (огибание волнами препятствий) имеет место тогда, когда длина ультразвуковой волны сравнима (или больше) с размерами находящегося на пути препятствия. Если препятствие по сравнению с длиной акустической волны велико, то явления дифракции нет. При одновременном движении в ткани нескольких ультразвуковых волн в определённой точке среды может происходить суперпозиция этих волн. Такое наложение волн друг на друга носит общее название интерференции. Если в процессе прохождения через биологический объект ультразвуковые волны пересекаются, то в определённой точке биологической среды наблюдается усиление или ослабление колебаний. Результат интерференции будет зависеть от пространственного соотношения фаз ультразвуковых колебаний в данной точке среды. Если ультразвуковые волны достигают определённого участка среды в одинаковых фазах (синфазно), то смещения частиц имеют одинаковые знаки и интерференция в таких условиях способствует увеличению амплитуды ультразвуковых колебаний. Если же ультразвуковые волны приходят к конкретному участку в противофазе, то смещение частиц будет сопровождаться разными знаками, что приводит к уменьшению амплитуды ультразвуковых колебаний.

Интерференция играет важную роль при оценке явлений, возникающих в тканях вокруг ультразвукового излучателя. Особенно большое значение имеет интерференция при распространении ультразвуковых волн в противоположных направлениях после отражения их от препятствия.

Поглощение ультразвуковых волн[]

Если среда, в которой происходит распространение ультразвука, обладает вязкостью и теплопроводностью или в ней имеются другие процессы внутреннего трения, то при распространении волны происходит поглощение звука, то есть по мере удаления от источника амплитуда ультразвуковых колебаний становится меньше, так же как и энергия, которую они несут. Среда, в которой распространяется ультразвук, вступает во взаимодействие с проходящей через него энергией и часть её поглощает. Преобладающая часть поглощенной энергии преобразуется в тепло, меньшая часть вызывает в передающем веществе необратимые структурные изменения. Поглощение является результатом трения частиц друг об друга, в различных средах оно различно. Поглощение зависит также от частоты ультразвуковых колебаний. Теоретически, поглощение пропорционально квадрату частоты. Величину поглощения можно характеризовать коэффициентом поглощения, который показывает, как изменяется интенсивность ультразвука в облучаемой среде. С ростом частоты он увеличивается. Интенсивность ультразвуковых колебаний в среде уменьшается по экспоненциальному закону. Этот процесс обусловлен внутренним трением, теплопроводностью поглощающей среды и её структурой. Его ориентировочно характеризует величина полупоглощающего слоя, которая показывает на какой глубине интенсивность колебаний уменьшается в два раза (точнее в 2,718 раза или на 37%). По Пальману при частоте, равной 0,8 МГц средние величины полупоглощающего слоя для некоторых тканей таковы: жировая ткань — 6,8 см; мышечная — 3,6 см; жировая и мышечная ткани вместе — 4,9 см. С увеличением частоты ультразвука величина полупоглощающего слоя уменьшается. Так при частоте, равной 2,4 МГц, интенсивность ультразвука, проходящего через жировую и мышечную ткани, уменьшается в два раза на глубине 1,5 см. Кроме того, возможно аномальное поглощение энергии ультразвуковых колебаний в некоторых диапазонах частот - это зависит от особенностей молекулярного строения данной ткани. Известно, что 2/3 энергии ультразвука затухает на молекулярном уровне и 1/3 на уровне микроскопических тканевых структур. Глубина проникновения ультразвуковых волн Под глубиной проникновения ультразвука понимают глубину, при которой интенсивность уменьшается на половину. Эта величина обратно пропорциональна поглощению: чем сильнее среда поглощает ультразвук, тем меньше расстояние, на котором интенсивность ультразвука ослабляется наполовину.

Рассеяние ультразвуковых волн[]

Если в среде имеются неоднородности, то происходит рассеяние звука, которое может существенно изменить простую картину распространения ультразвука и, в конечном счете, также вызвать затухание волны в первоначальном направлении распространения. Преломление ультразвуковых волн Так как акустическое сопротивление мягких тканей человека ненамного отличается от сопротивления воды, можно предполагать, что на границе раздела сред (эпидермис — дерма — фасция — мышца) будет наблюдаться преломление ультразвуковых лучей. Отражение ультразвуковых волн На явлении отражения основана ультразвуковая диагностика. Отражение происходит в приграничных областях кожи и жира, жира и мышц, мышц и костей. Если ультразвук при распространении наталкивается на препятствие, то происходит отражение, если препятствие мало, то ультразвук его как бы обтекает. Неоднородности организма не вызывают значительных отклонений, так как по сравнению с длиной волны (2 мм) их размерами (0,1 - 0,2 мм) можно пренебречь. Если ультразвук на своём пути наталкивается на органы, размеры которых больше длины волны, то происходит преломление и отражение ультразвука. Наиболее сильное отражение наблюдается на границах кость - окружающие её ткани и ткани - воздух. У воздуха малая плотность и наблюдается практически полное отражение ультразвука. Отражение ультразвуковых волн наблюдается на границе мышца - надкостница - кость, на поверхности полых органов.

Бегущие и стоячие ультразвуковые волны[]

Если при распространении ультразвуковых волн в среде не происходит их отражения, образуются бегущие волны. В результате потерь энергии колебательные движения частиц среды постепенно затухают, и чем дальше расположены частицы от излучающей поверхности, тем меньше амплитуда их колебаний. Если же на пути распространения ультразвуковых волн имеются ткани с разными удельными акустическими сопротивлениями, то в той или иной степени происходит отражение ультразвуковых волн от пограничного раздела. Наложение падающих и отражающихся ультразвуковых волн может приводить к возникновению стоячих волн. Для возникновения стоячих волн расстояние от поверхности излучателя до отражающей поверхности должно быть кратным половине длины волны.

Медузы и инфразвуки[]

Chrysaora Colorata

Фиолетовая-полосатая медуза, живет недалеко от берега Южной Калифорнии.

‎На краю "колокола" у медузы расположены примитивные глаза и органы равновесия - слуховые колбочки величиной с булавочную головку. Это и есть "уши" медузы. Однако "слышат" они не просто звуковые колебания, доступные и нашему уху, а инфразвуки с частотой 8 – 13 герц.

Перед штормом усиливающийся ветер срывает гребни волн и захлёстывает их. Каждое такое захлопывание воды на гребне волны порождает акустический удар, создаются инфразвуковые колебания, их-то и улавливает своим куполом медуза. Колокол медузы усиливает инфразвуковые колебания (как рупор) и передаёт на "слуховые колбочки". Шторм разыгрывается ещё за сотни километров от берега, он придет в эти места примерно часов через 20, а медузы уже слышат его и уходят на глубину. Нужно отдать должное бионикам, которые создали электронный автоматический аппарат - предсказатель бурь, работа которого основана на принципе "инфрауха" медузы. Такой прибор может предупредить о готовящейся буре за 15 часов, а не за два, как обычный морской барометр. <-->

Скорость звука[]

FA-18 Hornet breaking sound barrier filtered

Американский самолёт, F/A-18 в момент преодоления звуковго барьера. Белый ореол сформирован сжатыми водными капельками, которые, как думают, следуют из-за снижения в давлении воздуха вокруг самолёта .[2],[3]

Скорость звука — скорость распространения звуковых волн в среде. ‎Скорость звука зависит от среды, через которую проходят волны, и часто является характеристкой основного показателя материала.

  • В газах скорость звука меньше, чем в жидкостях.
  • В жидкостях скорость звука меньше, чем в твёрдых телах.
  • В воздухе при нормальных условиях скорость звука составляет 331.46 м/с (1193 км/ч).
  • В воде скорость звука составляет 1485 м/с.
  • В твёрдых телах скорость звука составляет 2000—6000 м/с.

См. также[]

Ссылки[]

Advertisement